Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(6): e111858, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36562188

RESUMO

Phytosulfokine (PSK) is a plant pentapeptide hormone that fulfills a wide range of functions. Although PSK has frequently been reported to function in the inverse regulation of growth and defense in response to (hemi)biotrophic pathogens, the mechanisms involved remain largely unknown. Using the tomato (Solanum lycopersicum) and Pseudomonas syringae pv. tomato (Pst) DC3000 pathogen system, we present compelling evidence that the PSK receptor PSKR1 interacts with the calcium-dependent protein kinase CPK28, which in turn phosphorylates the key enzyme of nitrogen assimilation glutamine synthetase GS2 at two sites (Serine-334 and Serine-360). GS2 phosphorylation at S334 specifically regulates plant defense, whereas S360 regulates growth, uncoupling the PSK-induced effects on defense responses and growth regulation. The discovery of these sites will inform breeding strategies designed to optimize the growth-defense balance in a compatible manner.


Assuntos
Solanum lycopersicum , Fosforilação , Glutamato-Amônia Ligase/metabolismo , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas
2.
Proc Natl Acad Sci U S A ; 120(16): e2301879120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036969

RESUMO

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Brotos de Planta , Fatores de Transcrição/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant J ; 114(5): 1132-1148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994639

RESUMO

Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.


Assuntos
Plantas , Transdução de Sinais , Plantas/genética , Plantas/metabolismo , Divisão Celular , Metabolismo dos Carboidratos
4.
Plant Cell Environ ; 47(7): 2578-2596, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38533652

RESUMO

Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras , Oryza , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Plantas Geneticamente Modificadas , Ácido Salicílico , Sacarose , Xanthomonas , Oryza/microbiologia , Oryza/genética , Oryza/imunologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Sacarose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Ácido Salicílico/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/imunologia
5.
J Exp Bot ; 75(9): 2682-2699, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243395

RESUMO

Concepts regarding the operation of the ascorbate-glutathione cycle and the associated water/water cycle in the processing of metabolically generated hydrogen peroxide and other forms of reactive oxygen species (ROS) are well established in the literature. However, our knowledge of the functions of these cycles and their component enzymes continues to grow and evolve. Recent insights include participation in the intrinsic environmental and developmental signalling pathways that regulate plant growth, development, and defence. In addition to ROS processing, the enzymes of the two cycles not only support the functions of ascorbate and glutathione, they also have 'moonlighting' functions. They are subject to post-translational modifications and have an extensive interactome, particularly with other signalling proteins. In this assessment of current knowledge, we highlight the central position of the ascorbate-glutathione cycle in the network of cellular redox systems that underpin the energy-sensitive communication within the different cellular compartments and integrate plant signalling pathways.


Assuntos
Ácido Ascórbico , Glutationa , Plantas , Ácido Ascórbico/metabolismo , Glutationa/metabolismo , Plantas/metabolismo , Transdução de Sinais , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
6.
J Exp Bot ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676562

RESUMO

Quiescence is an essential property of meristematic cells, which restrains the cell cycle while retaining the capacity to divide. This crucial process not only facilitates life-long tissue homeostasis and regenerative capacity but also provides protection against adverse environmental conditions, enabling cells to conserve the proliferative potency while minimising DNA damage. As a survival attribute, quiescence is inherently regulated by the products of aerobic life, in particular reactive oxygen species (ROS) and the redox (reduction/ oxidation) mechanisms that plant have evolved to channel these into pervasive signals. Adaptive responses allow quiescent cells to compensate for reduced oxygen tension (hypoxia) in a reversible manner, while the regulated production of the superoxide anion (.O2-) facilitates cell division and the maintenance of stem cells. Here we discuss the role of ROS and redox reactions in the control of the quiescent state in plant meristems, and how this process is integrated with cellular energy and hormone biochemistry. We consider the pathways that sense and transmit redox signals with a focus on the central significance of redox regulation in the mitochondria and nucleus, which is a major regulator of quiescence in meristems. We discuss recent studies that suggest ROS are a critical component of the feedback loops that control stem cell identity and fate and suggest that the ROS/hypoxia interface is an important "outside/ in" positional cue for plant cells, particularly in meristems.

7.
J Exp Bot ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460122

RESUMO

The superoxide anion radical (O2•-) is a one-electron reduction product of molecular oxygen. Compared to other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitic oxide, ascorbate and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular including mitochondria, chloroplasts and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.

8.
J Exp Bot ; 75(9): 2599-2603, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699987

RESUMO

This Special Issue was assembled to mark the 25th anniversary of the proposal of the d -mannose/ l -galactose (Smirnoff-Wheeler) ascorbate biosynthesis pathway in plants ( Wheeler et al., 1998 ). The issue aims to assess the current state of knowledge and to identify outstanding questions about ascorbate metabolism and functions in plants.


Assuntos
Ácido Ascórbico , Plantas , Ácido Ascórbico/metabolismo , Plantas/metabolismo
9.
J Exp Bot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557811

RESUMO

Hypoxia occurs when the oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally-induced hypoxia poses significant challenges for metabolically-active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide and reactive nitrogen species (RNS), such as nitric oxide (•NO), nitrogen dioxide (•NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots and hyponastic response. NO and hydrogen peroxide (H2O2) participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the GABA shunt and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge, highlighting the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.

10.
Biochem J ; 480(22): 1865-1869, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37994913

RESUMO

Plants are vital to human health and well-being, as well as helping to protect the environment against the negative impacts of climate change. They are an essential part of the 'One Health' strategy that seeks to balance and optimize the health of people, animals and the environment. Crucially, plants are central to nature-based solutions to climate mitigation, not least because soil carbon storage is an attractive strategy for mitigating greenhouse gas emissions and the associated climate change. Agriculture depends on genetically pure, high-quality seeds that are free from pests and pathogens and contain a required degree of genetic purity. This themed collection addresses key questions in the field encompassing the biochemical mechanisms that underlie plant responses and adaptations to a changing climate. This collection encompasses an analysis of the biochemistry and molecular mechanisms underpinning crop and forest resilience, together with considerations of plant adaptations to climate change-associated stresses, including drought, floods and heatwaves, and the increased threats posed by pathogens and pests.


Assuntos
Mudança Climática , Sementes , Animais , Humanos , Solo
11.
Biochem J ; 480(13): 941-956, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37351567

RESUMO

The WHIRLY (WHY) family of DNA/RNA binding proteins fulfil multiple but poorly characterised functions in plants. We analysed WHY protein functions in the Arabidopsis Atwhy1, Atwhy3, Atwhy1why3 single and double mutants and wild type controls. The Atwhy3 and Atwhy1why3 double mutants showed a significant delay in flowering, having more siliques per plant but with fewer seeds per silique than the wild type. While germination was similar in the unaged high-quality seeds of all lines, significant decreases in vigour and viability were observed in the aged mutant seeds compared with the wild type. Imbibition of unaged high-quality seeds was characterised by large increases in transcripts that encode proteins involved in oxygen sensing and responses to hypoxia. Seed aging resulted in a disruption of the imbibition-induced transcriptome profile such that transcripts encoding RNA metabolism and processing became the most abundant components of the imbibition signature. The imbibition-related profile of the Atwhy1why3 mutant seeds, was characterised by decreased expression of hypoxia-related and oxygen metabolism genes even in the absence of aging. Seed aging further decreased the abundance of hypoxia-related and oxygen metabolism transcripts relative to the wild type. These findings suggest that the WHY1 and WHY3 proteins regulate the imbibition-induced responses to oxygen availability and hypoxia. Loss of WHY1 and WHY3 functions decreases the ability of Arabidopsis seeds to resist the adverse effects of seed aging.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oxigênio/metabolismo , Longevidade/genética , Sementes/genética , Sementes/metabolismo , Hipóxia/metabolismo , Germinação/genética , Regulação da Expressão Gênica de Plantas
12.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836559

RESUMO

The control of apical dominance involves auxin, strigolactones (SLs), cytokinins (CKs), and sugars, but the mechanistic controls of this regulatory network are not fully understood. Here, we show that brassinosteroid (BR) promotes bud outgrowth in tomato through the direct transcriptional regulation of BRANCHED1 (BRC1) by the BR signaling component BRASSINAZOLE-RESISTANT1 (BZR1). Attenuated responses to the removal of the apical bud, the inhibition of auxin, SLs or gibberellin synthesis, or treatment with CK and sucrose, were observed in bud outgrowth and the levels of BRC1 transcripts in the BR-deficient or bzr1 mutants. Furthermore, the accumulation of BR and the dephosphorylated form of BZR1 were increased by apical bud removal, inhibition of auxin, and SLs synthesis or treatment with CK and sucrose. These responses were decreased in the DELLA-deficient mutant. In addition, CK accumulation was inhibited by auxin and SLs, and decreased in the DELLA-deficient mutant, but it was increased in response to sucrose treatment. CK promoted BR synthesis in axillary buds through the action of the type-B response regulator, RR10. Our results demonstrate that BR signaling integrates multiple pathways that control shoot branching. Local BR signaling in axillary buds is therefore a potential target for shaping plant architecture.


Assuntos
Brassinosteroides/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
13.
Plant J ; 111(3): 642-661, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665548

RESUMO

Reactive oxygen species (ROS) such as singlet oxygen, superoxide (O2●- ) and hydrogen peroxide (H2 O2 ) are the markers of living cells. Oxygenic photosynthesis produces ROS in abundance, which act as a readout of a functional electron transport system and metabolism. The concept that photosynthetic ROS production is a major driving force in chloroplast to nucleus retrograde signalling is embedded in the literature, as is the role of chloroplasts as environmental sensors. The different complexes and components of the photosynthetic electron transport chain (PETC) regulate O2●- production in relation to light energy availability and the redox state of the stromal Cys-based redox systems. All of the ROS generated in chloroplasts have the potential to act as signals and there are many sulphhydryl-containing proteins and peptides in chloroplasts that have the potential to act as H2 O2 sensors and function in signal transduction. While ROS may directly move out of the chloroplasts to other cellular compartments, ROS signalling pathways can only be triggered if appropriate ROS-sensing proteins are present at or near the site of ROS production. Chloroplast antioxidant systems serve either to propagate these signals or to remove excess ROS that cannot effectively be harnessed in signalling. The key challenge is to understand how regulated ROS delivery from the PETC to the Cys-based redox machinery is organised to transmit redox signals from the environment to the nucleus. Redox changes associated with stromal carbohydrate metabolism also play a key role in chloroplast signalling pathways.


Assuntos
Cloroplastos , Fotossíntese , Cloroplastos/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
14.
Plant Biotechnol J ; 21(8): 1528-1541, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529911

RESUMO

The sugars will eventually be exported transporters (SWEET) family of transporters in plants is identified as a novel class of sugar carriers capable of transporting sugars, sugar alcohols and hormones. Functioning in intercellular sugar transport, SWEETs influence a wide range of physiologically important processes. SWEETs regulate the development of sink organs by providing nutritional support from source leaves, responses to abiotic stresses by maintaining intracellular sugar concentrations, and host-pathogen interactions through the modulation of apoplastic sugar levels. Many bacterial and fungal pathogens activate the expression of SWEET genes in species such as rice and Arabidopsis to gain access to the nutrients that support virulence. The genetic manipulation of SWEETs has led to the generation of bacterial blight (BB)-resistant rice varieties. Similarly, while the overexpression of the SWEETs involved in sucrose export from leaves and pathogenesis led to growth retardation and yield penalties, plants overexpressing SWEETs show improved disease resistance. Such findings demonstrate the complex functions of SWEETs in growth and stress tolerance. Here, we review the importance of SWEETs in plant-pathogen and source-sink interactions and abiotic stress resistance. We highlight the possible applications of SWEETs in crop improvement programmes aimed at improving sink and source strengths important for enhancing the sustainability of yield. We discuss how the adverse effects of the overexpression of SWEETs on plant growth may be overcome.


Assuntos
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/genética , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Açúcares/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
15.
Plant Cell Environ ; 46(7): 1985-2006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37132157

RESUMO

Reactive oxygen species (ROS) and calcium (Ca2+ ) signalling are interconnected in the perception and transmission of environmental signals that control plant growth, development and defence. The concept that systemically propagating Ca2+ and ROS waves function together with electric signals in directional cell-to-cell systemic signalling and even plant-to-plant communication, is now firmly imbedded in the literature. However, relatively few mechanistic details are available regarding the management of ROS and Ca2+ signals at the molecular level, or how synchronous and independent signalling might be achieved in different cellular compartments. This review discusses the proteins that may serve as nodes or connecting bridges between the different pathways during abiotic stress responses, highlighting the crosstalk between ROS and Ca2+ pathways in cell signalling. We consider putative molecular switches that connect these signalling pathways and the molecular machinery that achieves the synergistic operation of ROS and Ca2+ signals.


Assuntos
Cálcio , Plantas , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Transdução de Sinais
16.
Theor Appl Genet ; 136(10): 212, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740151

RESUMO

KEY MESSAGE: GmTSA and GmALS were screened out for salt stress in soybean and explore the poteintial amino acid secondary metabolism pathways. Soybean (Glycine max L.) is an oil and protein crop of global importance, and salinity has significant effects on soybean growth. Here, a population of soybean chromosome segment substitution lines was screened to identify highly salt-tolerant lines. In total, 24 quantitative trait loci (QTLs) on seven chromosomes were associated with salt tolerance, and CSSL_R71 was selected for further analysis. Although numerous genes were differentially expressed in CSSL_R71 in response to salt statically no differently, transcript levels of classical salt-response genes, including those of the salt overly sensitive pathway. Rather, salt tolerance in CSSL_R71 was associated with changes in amino acid and lipid metabolism. In particular, changes in p-coumaric acid, shikimic acid, and pyrrole-2-carboxylic acid levels accompanied salt tolerance in CSSL_R71. Eleven differentially expressed genes (DEGs) related to amino acid and secondary metabolism were identified as candidate genes on the substituted chromosome fragment. Six of these showed differences in coding sequence between the parental genotypes. Crucially, overexpression of GmTSA (Glyma.03G158400, tryptophan synthase) significantly enhanced salt tolerance in soybean hairy roots, whereas overexpression of GmALS (Glyma.13G241000, acetolactate synthase) decreased salt tolerance. Two KASP markers were developed for GmALS and used to genotype salt-tolerant and salt-sensitive lines in the CSSL population. Non-synonymous mutations were directly associated with salt tolerance. Taken together, these data provide evidence that changes in amino acid and secondary metabolism have the potential to confer salt tolerance in soybean.


Assuntos
Aminoácidos , Glycine max , Metabolismo Secundário , Glycine max/genética , Tolerância ao Sal/genética , Estresse Salino
17.
EMBO Rep ; 22(7): e51944, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34018302

RESUMO

Iron (Fe) deficiency affects global crop productivity and human health. However, the role of light signaling in plant Fe uptake remains uncharacterized. Here, we find that light-induced Fe uptake in tomato (Solanum lycopersicum L.) is largely dependent on phytochrome B (phyB). Light induces the phyB-dependent accumulation of ELONGATED HYPOCOTYL 5 (HY5) protein both in the leaves and roots. HY5 movement from shoots to roots activates the expression of FER transcription factor, leading to the accumulation of transcripts involved in Fe uptake. Mutation in FER abolishes the light quality-induced changes in Fe uptake. The low Fe uptake observed in phyB, hy5, and fer mutants is accompanied by lower photosynthetic electron transport rates. Exposure to red light at night increases Fe accumulation in wild-type fruit but has little effects on fruit of phyB mutants. Taken together, these results demonstrate that Fe uptake is systemically regulated by light in a phyB-HY5-FER-dependent manner. These findings provide new insights how the manipulation of light quality could be used to improve Fe uptake and hence the nutritional quality of crops.


Assuntos
Proteínas de Arabidopsis , Fitocromo B , Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Ferro , Mutação , Fosfotransferases/biossíntese , Fosfotransferases/genética , Fitocromo B/genética , Fitocromo B/metabolismo , Fatores de Transcrição/genética
18.
Biochem J ; 479(5): 641-659, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35212355

RESUMO

The WHIRLY (WHY) DNA/RNA binding proteins fulfil multiple but poorly characterised functions in leaf development. Here, we show that WHY1 transcript levels were highest in the bases of 7-day old barley leaves. Immunogold labelling revealed that the WHY1 protein was more abundant in the nuclei than the proplastids of the leaf bases. To identify transcripts associated with leaf development we conducted hierarchical clustering of differentially abundant transcripts along the developmental gradient of wild-type leaves. Similarly, metabolite profiling was employed to identify metabolites exhibiting a developmental gradient. A comparative analysis of transcripts and metabolites in barley lines (W1-1 and W1-7) lacking WHY1, which show delayed greening compared with the wild type revealed that the transcript profile of leaf development was largely unchanged in W1-1 and W1-7 leaves. However, there were differences in levels of several transcripts encoding transcription factors associated with chloroplast development. These include a barley homologue of the Arabidopsis GATA transcription factor that regulates stomatal development, greening and chloroplast development, NAC1; two transcripts with similarity to Arabidopsis GLK1 and two transcripts encoding ARF transcriptions factors with functions in leaf morphogenesis and development. Chloroplast proteins were less abundant in the W1-1 and W1-7 leaves than the wild type. The levels of tricarboxylic acid cycle metabolites and GABA were significantly lower in WHY1 knockdown leaves than the wild type. This study provides evidence that WHY1 is localised in the nuclei of leaf bases, contributing the regulation of nuclear-encoded transcripts that regulate chloroplast development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Núcleo Celular/genética , Proteínas de Ligação a DNA , Fatores de Transcrição GATA , Hordeum/genética , Folhas de Planta/genética , Fatores de Transcrição
19.
New Phytol ; 236(2): 561-575, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35789001

RESUMO

Low light intensities affect the outbreak of plant diseases. However, the underlying molecular mechanisms remain poorly understood. High-performance liquid chromatography analysis of tomato (Solanum lycopersicum) revealed that apoplastic glucose (Glc) levels decreased in response to low light. Conversely, low-light-induced susceptibility to Pseudomonas syringae pv tomato (Pst) DC3000 was significantly alleviated by exogenous Glc treatment. Using cell-based biolayer interferometry assays, we found that Glc specifically binds to the tomato regulator of G protein signaling 1 (RGS1). Laser scanning confocal microscopy imaging revealed that Glc triggers RGS1 endocytosis, which influences the uncoupling of the RGS1-Gα (GPA1) and GPA1-Gß (SlGB1) proteins, in a dose- and duration-dependent manner. Analysis of G protein single and double mutants revealed that RGS1 negatively regulates disease resistance under low light and is required for Glc-enhanced defense. Downstream of RGS1-Glc binding, GPA1 negatively mediates the light-intensity-regulated defense, whereas SlGB1 positively regulates this process. These results reveal a novel light-intensity-responsive defense system that is mediated by a Glc-RGS1-G protein signaling pathway. This information will be critical for future investigations of how plant cells sense extracellular sugars and adjust defense under different environments, as well as for genetic engineering approaches to improve stress resilience.


Assuntos
Solanum lycopersicum , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Glucose , Solanum lycopersicum/genética , Doenças das Plantas/genética , Pseudomonas syringae/fisiologia , Transdução de Sinais/genética , Açúcares
20.
New Phytol ; 236(5): 1796-1808, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36052744

RESUMO

Herbivory severely affects plant growth, posing a threat to crop production. Calcium ion (Ca2+ ) signaling and accumulation of jasmonates (JAs) are activated in plant response to herbivore attack, leading to the expression of defense pathways. However, little is known about how the Ca2+ signal modulates JA biosynthesis. We used diverse techniques, including CRISPR/Cas9, UPLC-MS/MS and molecular biology methods to explore the role of ETHYLENE RESPONSE FACTOR 16 in Ca2+ signal-triggered JA burst during herbivore defense in tomato. Here we show that simulated herbivory induces GLUTAMATE RECEPTOR LIKE3.3/3.5 (GLR3.3/3.5)-dependent increases in electrical activity, Ca2+ influx and increases the abundance of CALMODULIN2 (CaM2) and ERF16 transcripts in tomato. The interaction between CaM2 and ERF16 promotes JA biosynthesis by enhancing the transcriptional activity of ERF16, which increases the activation of ERF16 expression and causes expression of LIPOXYGENASE D (LOXD), AOC and 12-OXO-PHYTODIENOIC ACID REDUCTASE 3 (OPR3), the key genes in JA biosynthesis. Mutation of CaM2 results in decreased JA accumulation, together with the expression of JA biosynthesis-related genes, leading to reduced resistance to the cotton bollworm Helicoverpa armigera. These findings reveal a molecular mechanism underpinning the Ca2+ signal-initiated systemic JA burst and emphasize the pivotal role of Ca2+ signal/ERF16 crosstalk in herbivore defense.


Assuntos
Mariposas , Solanum lycopersicum , Animais , Herbivoria/fisiologia , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa