Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nutr Neurosci ; 25(6): 1325-1337, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33269659

RESUMO

Some reports have described that a high fructose diet is associated with a deficit of hippocampus-dependent cognitive functions. In this study, we have evaluated the effects of fructose on spatial memory and molecular markers in the hippocampus and prefrontal cortex and analyzed whether those alterations are reversible. Male Wistar rats (n = 60) began their treatment during adolescence. A group was forced to drink a solution of 10% fructose for twelve weeks. Another group was subjected to the same fructose intake schedule, but later fructose was removed, and tap water was provided for four weeks. After treatments, spatial memory was evaluated with Barnes maze. Different neurogenesis, inflammation, astrocyte, and energy homeostasis markers were evaluated with immunofluorescence, ELISA, and Western blot. Changes were analyzed using two-way repeated-measures ANOVA, one-way ANOVA, and Tukeýs posthoc test (p < 0.05). Results showed that after long-term consumption of fructose, there was an impairment of spatial memory. This deficit was concomitant with the abolition of hippocampal neurogenesis and significant increases of IL-1b in the hippocampus and prefrontal cortex. Levels of COX-2 were decreased in the hippocampus. Besides, fructose induced a significant increase in GFAP and a decrease of glutamine synthetase. Likewise, energy homeostasis-associated neuropeptide orexin-A and their receptors (ORX R1 and ORX R2) were significantly increased. The spatial memory deficit, neuroinflammation, and changes in some proteins expression were permanent one month after the fructose elimination from the diet. These results suggest that fructose induces substantial hippocampal and cortical changes, and those are irreversible after a shift in the diet.


Assuntos
Frutose , Hipocampo , Animais , Dieta , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Memória Espacial
2.
Saudi Pharm J ; 25(3): 413-418, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28344497

RESUMO

Background: Although albendazole is the drug-of-choice for the treatment of neurocysticercosis, its efficacy is limited due to its low bioavailability. An alternative for optimizing pharmacological treatment is through drug combinations. In vitro studies have shown that nitazoxanide and tizoxanide (the active metabolite of nitazoxanide) exhibit cysticidal activity and that the combination of tizoxanide with albendazole sulfoxide (the active metabolite of albendazole) produced an additive effect. Objectives: (1) To assess the concentration profile of tizoxanide in plasma and in cerebrospinal fluid; and (2) to evaluate the influence of nitazoxanide on the pharmacokinetics of albendazole in plasma and in cerebrospinal fluid. Methods: Two different studies were conducted. In study 1, 10 male Sprague-Dawley rats received a single oral dose of 7.5 mg/kg of nitazoxanide and serial blood and cerebrospinal fluid samples were collected over a period of 4 h. In study 2, 38 healthy male Sprague-Dawley rats were randomly divided into two groups: one of these received a single dose of albendazole (15 mg/kg) and, in the other group, albendazole (15 mg/kg) was co-administered with nitazoxanide (7.5 mg/kg). Plasma and cerebrospinal fluid samples were collected from 0 to 16 h after administration. Albendazole sulfoxide and tizoxanide levels were assayed by using HPLC or LC/MS techniques. Results: In study 1, tizoxanide reached a maximum plasma concentration of 244.42 ± 31.98 ng/mL at 0.25 h; however, in cerebrospinal fluid, this could be detected only at 0.5 h, and levels were below the quantification limit (10 ng/mL). These data indicate low permeation of tizoxanide into the blood brain barrier. In study 2, Cmax, the area under the curve, and the mean residence time of albendazole sulfoxide in plasma and cerebrospinal fluid were not affected by co-administration with nitazoxanide. Conclusion: The results of the present study indicate that in rats at the applied doses, tizoxanide does not permeate into the cerebrospinal fluid. Furthermore, nitazoxanide does not appear to alter significantly the pharmacokinetics of albendazole in plasma or in cerebrospinal fluid.

3.
BMC Neurosci ; 16: 7, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25886955

RESUMO

BACKGROUND: Mefloquine can cross the blood-brain barrier and block the gap junction intercellular communication in the brain. Enhanced electrical coupling mediated by gap junctions is an underlying mechanism involved in the generation and maintenance of seizures. For this reason, the aim of this study was to analyze the effects of the systemic administration of mefloquine on tonic-clonic seizures induced by two acute models such as pentylenetetrazole and maximal electroshock. RESULTS: All the control rats presented generalized tonic-clonic seizures after the administration of pentylenetetrazole. However, the incidence of seizures induced by pentylenetetrazole significantly decreased in the groups administered systematically with 40 and 80 mg/kg of mefloquine. In the control group, none of the rats survived after the generalized tonic-clonic seizures induced by pentylenetetrazole, but survival was improved by mefloquine. Besides, mefloquine significantly modified the total spectral power as well as the duration, amplitude and frequency of the epileptiform activity induced by pentylenetetrazole. For the maximal electroshock model, mefloquine did not change the occurrence of tonic hindlimb extension. However, this gap junction blocker significantly decreased the duration of the tonic hindlimb extension induced by the acute electroshock. CONCLUSIONS: These data suggest that mefloquine at low doses might be eliciting some anticonvulsant effects when is systemically administered to rats.


Assuntos
Anticonvulsivantes/farmacologia , Mefloquina/farmacologia , Convulsões/tratamento farmacológico , Doença Aguda , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrodos Implantados , Eletroencefalografia , Eletrochoque , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Masculino , Pentilenotetrazol , Distribuição Aleatória , Ratos , Ratos Wistar , Convulsões/fisiopatologia , Análise de Sobrevida
4.
Neuroscience ; 548: 27-38, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38679409

RESUMO

Fructose consumption has increased over the years, especially in adolescents living in urban areas. Growing evidence indicates that daily fructose consumption leads to some pathological conditions, including memory impairment. This review summarizes relevant data describing cognitive deficits after fructose intake and analyzes the underlying neurobiological mechanisms. Preclinical experiments show sex-related deficits in spatial memory; that is, while males exhibit significant imbalances in spatial processing, females seem unaffected by dietary supplementation with fructose. Recognition memory has also been evaluated; however, only female rodents show a significant decline in the novel object recognition test performance. According to mechanistic evidence, fructose intake induces neuroinflammation, mitochondrial dysfunction, and oxidative stress in the short term. Subsequently, these mechanisms can trigger other long-term effects, such as inhibition of neurogenesis, downregulation of trophic factors and receptors, weakening of synaptic plasticity, and long-term potentiation decay. Integrating all these neurobiological mechanisms will help us understand the cellular and molecular processes that trigger the memory impairment induced by fructose.


Assuntos
Frutose , Transtornos da Memória , Animais , Feminino , Humanos , Frutose/efeitos adversos , Transtornos da Memória/induzido quimicamente , Masculino
5.
Radiother Oncol ; 201: 110539, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299575

RESUMO

BACKGROUND AND PURPOSE: This study aimed to investigate the radiochemical oxygen depletion (ROD) in vivo by directly measuring oxygen levels in various mouse tissues during ultra-high dose rate (UHDR) irradiation at clinically relevant doses and dose rates. MATERIALS AND METHODS: Mice bearing subcutaneous human glioblastoma (U-87 MG) tumors were used for tumor and normal tissue (skin, muscle, brain) measurements. An oxygen-sensitive phosphorescent probe (Oxyphor PtG4) was injected into the tissues, and oxygen levels were monitored using a fiberoptic phosphorometer during UHDR irradiation with a 6 MeV electron linear accelerator (LINAC). Dose escalation experiments (10-40 Gy) were performed at a dose rate of 1300 Gy/s, and dose rate escalation experiments were conducted at a fixed dose of 40 Gy with dose rates ranging from 2 to 101 Gy/s. RESULTS: Radiation-induced change in tissue oxygenation (ΔpO2) increased linearly with dose and correlated with baseline tissue oxygenation levels in the range of 0 - 30 mmHg. At higher baseline tissue oxygenation levels, such as those observed in muscle and brain, there was no corresponding increase in ΔpO2. When we modulated dose rate, ΔpO2 increased steeply up to âˆ¼ 20 Gy/s and plateaued thereafter. The relationship between ΔpO2 and dose rate showcases the interplay between ROD and reoxygenation. CONCLUSION: While UHDR irradiation induces measurable oxygen depletion in tissues, the observed changes in oxygenation levels do not support the hypothesis that ROD-induced radioresistance is responsible for the FLASH tissue-sparing effect at clinically relevant doses and dose rates. These findings highlight the need for further investigation into alternative mechanisms underlying the FLASH effect.

6.
Mol Neurobiol ; 61(9): 6264-6278, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38289456

RESUMO

Epilepsy is characterized by a sustained depolarization and repeated discharge of neurons, attributed to overstimulation of N-methyl-D-aspartate receptors (NMDAr). Herein, we propose that probenecid (PROB), an inhibitor of the activity of some ATP binding-cassette transporters (ABC-transporters) can modify NMDAr activity and expression in amygdaloid kindled model. Some studies have suggested that NMDAr expression could be regulated by inhibiting the activity of P-glycoprotein (MDR1) and drug resistance protein-1 (MRP1). Besides, PROB was found to interact with other proteins with proven activity in the kindling model, such as TRPV2 channels, OAT1, and Panx1. Administering PROB at two doses (100 and 300 mg/kg/d) for 5 d decreased after-discharge duration and Racine behavioral scores. It also reduced the expression of NR2B and the activity of total NOS and the expression of nNOS with respect to the kindling group. In a second protocol, voltage-clamp measurements of NMDA-evoked currents were performed in CA1 hippocampal cells dissociated from control and kindled rats. PROB produced a dose-dependent reduction in NMDA-evoked currents. In neurons from kindled rats, a residual NMDA-evoked current was registered with respect to control animals, while a reduction in NMDA-evoked currents was observed in the presence of 20 mM PROB. Finally, we evaluated the expression of MRP1 and MDR1 in order to establish a relationship between the reduction of kindling parameters, the inhibition of NMDA-type currents, and the expression of these transporters. Based on our results, we conclude that at the concentrations used, PROB inhibits currents evoked by NMDA in dissociated neurons of control and kindled rats. In the kindling model, at the tested doses, PROB decreases the after-discharge duration and Racine behavioral score in the kindling model. We propose a mechanism that could be dependent on the expression of ABC-type transporters.


Assuntos
Modelos Animais de Doenças , Epilepsia , Excitação Neurológica , Probenecid , Ratos Wistar , Receptores de N-Metil-D-Aspartato , Animais , Probenecid/farmacologia , Excitação Neurológica/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Masculino , Epilepsia/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , N-Metilaspartato/farmacologia , N-Metilaspartato/metabolismo , Ratos , Óxido Nítrico Sintase Tipo I/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos
7.
J Vis Exp ; (211)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39400184

RESUMO

Pulse-wave velocity (PWV), flow-mediated dilation (FMD), and carotid intima-media thickness (CIMT) are established methods used in research and clinical settings to assess arterial stiffness, endothelial function, and subclinical atherogenesis. These measurements may reflect vascular disease and atherosclerotic progression, which are major causes of adverse cardiovascular events. These methods are particularly valuable in determining cardiovascular dysfunction among populations with different risk factors, such as diabetes mellitus, hypertension, and other metabolic dysfunction-related conditions. They provide a non-invasive and reliable source of information that complements clinical practice. Early detection, risk assessment, and therapeutic decisions regarding cardiovascular disease can be achieved, ultimately contributing to improved patient outcomes. Traditional tools for evaluating cardiovascular disease do not reveal whether metabolic syndrome affects early subclinical cardiovascular disease in patients with obesity. Recent research has highlighted the importance of including arterial stiffness and endothelial function in a comprehensive cardiovascular assessment. Therefore, the aim of the present study is to describe methods that provide information on early subclinical vascular aging, endothelial dysfunction, and atherogenic disease, enabling vascular-targeted risk stratification among populations with obesity and different metabolic profiles.


Assuntos
Doenças Cardiovasculares , Espessura Intima-Media Carotídea , Síndrome Metabólica , Análise de Onda de Pulso , Humanos , Síndrome Metabólica/fisiopatologia , Análise de Onda de Pulso/métodos , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/diagnóstico por imagem , Rigidez Vascular/fisiologia , Fatores de Risco de Doenças Cardíacas , Masculino , Vasodilatação/fisiologia
8.
Rev Neurosci ; 24(3): 337-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23585211

RESUMO

Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Oxidantes Fotoquímicos/toxicidade , Ozônio/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Exposição Ambiental , Humanos , Sistema Nervoso/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo
9.
Brain Res ; 1803: 148227, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592802

RESUMO

BACKGROUND: Development of effective drugs for epilepsy are needed, as nearly 30 % of epileptic patients, are resistant to current treatments. This study is aimed to characterize the anticonvulsant effect of dapsone (DDS), in the kainic acid (KA)-induced Status Epilepticus (SE) by recording the brain metabolic activity with an [18F]FDG-PET analysis. METHODS: Wistar rats received KA (10 mg/kg, i.p., single dose) to produce sustained seizures. [18F]FDG-PET and electroencephalographic (EEG) studies were then performed. DDS or vehicle were administered 30 min before KA. [18F]FDG uptake and EEG were evaluated at baseline, 2 and 25 h after KA injection. Likewise, caspase-8, 3 hippocampal activities and Fluoro-Jade B neuronal degeneration and Hematoxylin-eosin staining were measured 25 h after KA. RESULTS: PET data evaluated at 2 h showed hyper-uptake of [18F]FDG in the control group, which was decreased by DDS. At 25 h, hypo-uptake was observed in the control group and higher values due to DDS effect. EEG spectral power was increased 2 h after KA administration in the control group during the generalized tonic-clonic seizures, which was reversed by DDS, correlated with [18F]FDG-PET uptake changes. The values of caspases-8 activity decreased 48 and 43 % vs control group in the groups treated with DDS (12.5 y 25 mg/kg respectively), likewise; caspase-3 activity diminished by 57 and 53 %. Fewer degenerated neurons were observed due to DDS treatments. CONCLUSIONS: This study pinpoints the anticonvulsant therapeutic potential of DDS. Given its safety and effectiveness, DDS may be a viable alternative for patients with drug-resistant epilepsy.


Assuntos
Epilepsia , Estado Epiléptico , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ácido Caínico/farmacologia , Fluordesoxiglucose F18/metabolismo , Dapsona/farmacologia , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/diagnóstico por imagem , Estado Epiléptico/tratamento farmacológico , Convulsões/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo
10.
Rev Invest Clin ; 64(2): 182-91, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-22991780

RESUMO

Neuronal activity in the central nervous system undergoes a variety of electrophysiological changes along the sleep-wake cycle. These changes are modulated by a complex interaction between different neurochemical systems located throughout the brain. Within brainstem and hypothalamus there are a number of neuronal populations that promote wakefulness through the action of different neurotransmitters like noradrenaline, serotonin, histamine and orexin. These systems act together in the generation and maintenance of wakefulness, however although each one contributes in a unique way no neurotransmitter seems to be absolutely necessary because wakefulness is not completely inhibited in the absence of any of them. On the other hand, neurons located in the hypothalamus and brainstem are involved in initiating and maintaining sleep. These neurons contain neurotransmitters such as acetylcholine and GABA and have projections to nuclei involved in wakefulness regulation. Recently, models have been proposed suggesting that sleep is modulated by flip-flop switches which are characterized by neuronal circuits with different neurotransmitters and that interacting to regulate the initiation and maintenance of the different stages of sleep wake cycle. This review is based on pharmacological, electrophysiological and neurochemical studies with the aim of analyze the major neurotransmitters and the cerebral regions involved in the regulation of wakefulness and different states of sleep.


Assuntos
Neurotransmissores/fisiologia , Sono/fisiologia , Vigília/fisiologia , Humanos
11.
Neural Regen Res ; 17(3): 488-496, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380876

RESUMO

Sulfonylurea receptor (SUR) belongs to the adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter family; however, SUR is associated with ion channels and acts as a regulatory subunit determining the opening or closing of the pore. Abcc8 and Abcc9 genes code for the proteins SUR1 and SUR2, respectively. The SUR1 transcript encodes a protein of 1582 amino acids with a mass around 140-177 kDa expressed in the pancreas, brain, heart, and other tissues. It is well known that SUR1 assembles with Kir6.2 and TRPM4 to establish KATP channels and non-selective cation channels, respectively. Abbc8 and 9 are alternatively spliced, and the resulting transcripts encode different isoforms of SUR1 and SUR2, which have been detected by different experimental strategies. Interestingly, the use of binding assays to sulfonylureas and Western blotting has allowed the detection of shorter forms of SUR (~65 kDa). Identity of the SUR1 variants has not been clarified, and some authors have suggested that the shorter forms are unspecific. However, immunoprecipitation assays have shown that SUR2 short forms are part of a functional channel even coexisting with the typical forms of the receptor in the heart. This evidence confirms that the structure of the short forms of the SURs is fully functional and does not lose the ability to interact with the channels. Since structural changes in short forms of SUR modify its affinity to ATP, regulation of its expression might represent an advantage in pathologies where ATP concentrations decrease and a therapeutic target to induce neuroprotection. Remarkably, the expression of SUR1 variants might be induced by conditions associated to the decrease of energetic substrates in the brain (e.g. during stroke and epilepsy). In this review, we want to contribute to the knowledge of SUR1 complexity by analyzing evidence that shows the existence of short SUR1 variants and its possible implications in brain function.

12.
Neurosci Lett ; 772: 136476, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35085689

RESUMO

Fructose ingestion elicits a diversity of brain alterations, but it is unknown how it affects N-methyl-D-Aspartate receptors (NMDAr). Here, we analyzed the expression of NMDAr subunits and protein kinases after the long-term dietary fructose intake. Since NMDAr are related to epileptogenesis, we also examined whether fructose increases the susceptibility to seizures after the microinjection of kainic acid (KA) in the rat hippocampus. Wistar rats were randomly divided into water (control) and fructose groups. For twelve weeks, groups had ad libitum access to water or fructose solution (10% w/v). After treatment, hippocampal protein expression of NMDAr subunits and protein kinases involved in NMDAr regulation were analyzed. Additionally, electroencephalographic and behavioral changes related to seizures were evaluated after the microinjection of a sub-convulsive dose of KA in the hippocampus. Fructose induced the decrease of NR1 and, conversely, the increase of NR2A subunits expression in the hippocampus. Also, the phosphorylation of protein kinase C alpha (PKCα) and c-Src increased significantly. No electroencephalographic or behavioral patterns related to convulsive motor seizures were observed in the control group. However, all the rats that ingested fructose showed stage 3 seizures (forelimb clonus) and a significant increase in the number of wet-dog shakes. Moreover, electroencephalographic recordings revealed pronounced epileptiform activity and increased total spectral power at 30 and 60 min after the microinjection of KA. This study shows for the first time that fructose intake exacerbates the seizures induced by KA. Therefore, we propose that this proconvulsant effect could be mediated by changes in NMDAr subunits expression and increased activation of kinases modulating NMDAr function.


Assuntos
Frutose/metabolismo , Xarope de Milho Rico em Frutose/efeitos adversos , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/metabolismo , Animais , Ingestão de Alimentos , Frutose/administração & dosagem , Xarope de Milho Rico em Frutose/administração & dosagem , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ácido Caínico/toxicidade , Masculino , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Convulsões/etiologia , Quinases da Família src/metabolismo
13.
Brain Res ; 1769: 147621, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403661

RESUMO

OBJECTIVE: Brain metabolic processes are not fully characterized in the kainic acid (KA)-induced Status Epilepticus (KASE). Thus, we evaluated the usefulness of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) as an experimental strategy to evaluate in vivo, in a non-invasive way, the glucose consumption in several brain regions, in a semi-quantitative study to compare and to correlate with data from electroencephalography and histology studies. METHODS: Sixteen male Wistar rats underwent FDG-PET scans at basal state and after KA injection. FDG-PET images were normalized to an MRI-based atlas and segmented to locate regions. Standardized uptake values (SUV) were obtained at several time points. EEGs and cell viability by histological analysis, were also evaluated. RESULTS: FDG-PET data showed changes in regions such as: amygdala, hippocampus, accumbens, entorhinal cortex, motor cortex and hypothalamus. Remarkably, hippocampal hypermetabolism was found (mean SUV = 2.66 ± 0.057) 2 h after KA administration, while hypometabolism at 24 h (mean SUV = 1.83 ± 0.056) vs basal values (mean SUV = 2.19 ± 0.057). EEG showed increased spectral power values 2 h post-KA administration. Hippocampal viable-cell counting 24 h after KA was decreased, while Fluoro-Jade B-positive cells were increased, as compared to control rats, coinciding with the hypometabolism detected in the same region by semi-quantitative FDG-PET at 24 h after KASE. CONCLUSIONS: PET is suitable to measure metabolic brain changes in the rat model of status epilepticus induced by KA (KASE) at the first 24 h, compared to that of EEG; PET data may also be sensitive to cell viability.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Caínico/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Fluordesoxiglucose F18 , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia
14.
Radiat Oncol ; 15(1): 269, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228731

RESUMO

BACKGROUND: Whole-brain radiotherapy is a primary treatment for brain tumors and brain metastasis, but it also induces long-term undesired effects. Since cognitive impairment can occur, research on the etiology of secondary effects has focused on the hippocampus. Often overlooked, the hypothalamus controls critical homeostatic functions, some of which are also susceptible after whole-brain radiotherapy. Therefore, using whole-brain irradiation (WBI) in a rat model, we measured neurotransmitters and receptors in the hypothalamus. The prefrontal cortex and brainstem were also analyzed since they are highly connected to the hypothalamus and its regulatory processes. METHODS: Male Wistar rats were exposed to WBI with 11 Gy (Biologically Effective Dose = 72 Gy). After 1 month, we evaluated changes in gamma-aminobutyric acid (GABA), glycine, taurine, aspartate, glutamate, and glutamine in the hypothalamus, prefrontal cortex, and brainstem according to an HPLC method. Ratios of Glutamate/GABA and Glutamine/Glutamate were calculated. Through Western Blott analysis, we measured the expression of GABAa and GABAb receptors, and NR1 and NR2A subunits of NMDA receptors. Changes were analyzed comparing results with sham controls using the non-parametric Mann-Whitney U test (p < 0.05). RESULTS: WBI with 11 Gy induced significantly lower levels of GABA, glycine, taurine, aspartate, and GABAa receptor in the hypothalamus. Also, in the hypothalamus, a higher Glutamate/GABA ratio was found after irradiation. In the prefrontal cortex, WBI induced significant increases of glutamine and glutamate, Glutamine/Glutamate ratio, and increased expression of both GABAa receptor and NMDA receptor NR1 subunit. The brainstem showed no statistically significant changes after irradiation. CONCLUSION: Our findings confirm that WBI can affect rat brain regions differently and opens new avenues for study. After 1 month, WBI decreases inhibitory neurotransmitters and receptors in the hypothalamus and, conversely, increases excitatory neurotransmitters and receptors in the prefrontal cortex. Increments in Glutamate/GABA in the hypothalamus and Glutamine/Glutamate in the frontal cortex indicate a neurochemical imbalance. Found changes could be related to several reported radiotherapy secondary effects, suggesting new prospects for therapeutic targets.


Assuntos
Irradiação Craniana , Hipotálamo/efeitos da radiação , Neurotransmissores/análise , Córtex Pré-Frontal/efeitos da radiação , Receptores de GABA/análise , Receptores de N-Metil-D-Aspartato/análise , Animais , Química Encefálica/efeitos da radiação , Hipotálamo/química , Masculino , Córtex Pré-Frontal/química , Ratos , Ratos Wistar
15.
Exp Neurol ; 330: 113353, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32380020

RESUMO

Cerebral edema is a clinical problem that frequently follows ischemic infarcts. Sulfonylurea receptor 1 (SUR1) is an inducible protein that can form a heteromultimeric complex with aquaporin 4 (AQP4) that mediate the ion/water transport involved in brain tissue swelling. Transcription of the Abcc8 gene coding for SUR1 depends on the activity of transcriptional factor SP1, which is modulated by the cellular redox environment. Since oxidative stress is implicated in the induced neuronal damage in ischemia and edema formation, the present study aimed to evaluate if the antioxidant resveratrol (RSV) prevents the damage by reducing the de novo expression of SUR1 in the ischemic brain. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion followed by different times of reperfusion. RSV (1.9 mg/kg; i.v.) was administered at the onset of reperfusion. Brain damage and edema formation were recognized by neurological evaluation, time of survival, TTC (2,3,5-Triphenyltetrazolium chloride) staining, Evans blue extravasation, and water content. RSV mechanism of action was studied by SP1 binding activity measured through the Electrophoretic Mobility Shift Assay, and Abcc8 and Aqp4 gene expression evaluated by qPCR, immunofluorescence, and Western blot. We found that RSV reduced the infarct area and cerebral edema, prevented blood-brain barrier damage, improved neurological performance, and increased survival. Additionally, our findings suggest that the antioxidant activity of RSV targeted SP transcription factors and inhibited SUR1 and AQP4 expression. Thus, RSV by decreasing SUR1 expression could contribute to reducing edema formation, constituting a therapeutic alternative for edema reduction in stroke.


Assuntos
Antioxidantes/farmacologia , Edema Encefálico/metabolismo , Isquemia Encefálica/patologia , Resveratrol/farmacologia , Receptores de Sulfonilureias/metabolismo , Animais , Edema Encefálico/etiologia , Isquemia Encefálica/complicações , Masculino , Ratos , Ratos Wistar , Receptores de Sulfonilureias/efeitos dos fármacos
16.
Brain Sci ; 10(9)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962200

RESUMO

Glucose transporter (GLUT)3 up-regulation is an adaptive response activated to prevent cellular damage when brain metabolic energy is reduced. Resveratrol is a natural polyphenol with anti-oxidant and anti-inflammatory features that protects neurons against damage induced in cerebral ischemia. Since transcription factors sensitive to oxidative stress and inflammation modulate GLUT3 expression, the purpose of this work was to assess the effect of resveratrol on GLUT3 expression levels after ischemia. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by different times of reperfusion. Resveratrol (1.9 mg/kg; i. p.) was administered at the onset of the restoration of the blood flow. Quantitative-PCR and Western blot showed that MCAO provoked a substantial increase in GLUT3 expression in the ipsilateral side to the lesion of the cerebral cortex. Immunofluorescence assays indicated that GLUT3 levels were upregulated in astrocytes. Additionally, an important increase in GLUT3 occurred in other cellular types (e.g., damaged neurons, microglia, or infiltrated macrophages). Immunodetection of the microtubule-associated protein 2 (MAP2) showed that MCAO induced severe damage to the neuronal population. However, the administration of resveratrol at the time of reperfusion resulted in injury reduction. Resveratrol also prevented the MCAO-induced increase of GLUT3 expression. In conclusion, resveratrol protects neurons from damage induced by ischemia and prevents GLUT3 upregulation in the damaged brain that might depend on AMPK activation.

17.
Brain Res ; 1708: 181-187, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571982

RESUMO

Status epilepticus (SE) is a serious medical condition, as it may trigger epileptogenesis. SE produces continuous generalized seizures resulting in irreversible brain damage. Therefore, the use of neuroprotective agents to prevent cell damage, may reduce the impact of SE. The use of diazepam (DZP), has shown limited neuroprotective effect in SE patients. According to previous reports, dapsone (DDS) is able to reduce both cell damage and seizures, when administered 30 min before the onset of seizures. This study is aimed to evaluate the ability of DDS, alone or in combination with DZP starting their administration once the SE is onset to evaluate the control of seizures in rats. Results showed a reduced convulsive electrical activity after 30 min, 1 and 2 h after SE induced by kainic acid (KA) administration, in the animals treated with DZP alone or in combination with DDS. At 24 h, we observed electrical activity similar to baseline in all groups receiving treatment. The animals treated with DDS and DZP alone or in combination showed an increase in the number of viable pyramidal cells but only the combination showed a lower number of damaged pyramidal neurons of hippocampal CA3. In conclusion, DDS plus DZP was able to control SE and to prevent SE-induced damage, when administered in combination with DZP. As DDS is already in use for patients with leprosy, that combination may be a safe, good option for human cases of SE.


Assuntos
Dapsona/farmacologia , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/farmacologia , Diazepam/farmacologia , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Ácido Caínico/efeitos adversos , Masculino , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Estado Epiléptico/induzido quimicamente
18.
Neurol Res ; 40(1): 26-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28988516

RESUMO

Objective Quinine (QUIN) and carbenoxolone (CNX) elicit anticonvulsant effects typically characterized by the reduction of the epileptiform activity as well as changes in behavioral parameters related to seizures. Therefore, the aim of this study was to analyze the effects of these molecules on the anticonvulsant activity of some classical antiepileptic drugs. Methods Male Wistar rats were used. Valproate (VPA), phenytoin (PHT), or carbamazepine (CBZ) was administered at sub-therapeutic doses for intraperitoneal via. Subsequently, animals were administered with a single dose of QUIN or CNX. The anticonvulsant activity was evaluated with the maximal electroshock (MES) test and pentylenetetrazole (PTZ) administration. Additionally, the plasma levels of CBZ were determined using an HPLC method. Results All the control rats presented generalized tonic-clonic seizures after the MES test or the administration of PTZ. For the MES test, all of the antiepileptic drugs increased their anticonvulsant activity when were co-administered with QUIN. For the PTZ test, only the combination CBZ plus QUIN significantly increased the percentage of protection against the generalized tonic-clonic seizures. The co-administration of CBZ plus QUIN resulted in an augmented concentration of CBZ in plasma. Discussion The present study shows that QUIN and CNX enhance the anticonvulsant activity of some classical antiepileptic drugs. However, only the combination CBZ/QUIN had significant effects on both MES and PTZ models. Such anticonvulsant activity could be attributed to increased levels of CBZ in plasma. We propose that these molecules could improve the pharmacological actions of antiepileptic drugs administered at sub-therapeutic doses.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbenoxolona/uso terapêutico , Epilepsia/tratamento farmacológico , Quinina/uso terapêutico , Animais , Carbenoxolona/sangue , Convulsivantes/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Eletrochoque/efeitos adversos , Epilepsia/etiologia , Masculino , Pentilenotetrazol/toxicidade , Ratos , Ratos Wistar
19.
Nutrients ; 10(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423806

RESUMO

It has been widely described that chronic intake of fructose causes metabolic alterations which can be associated with brain function impairment. In this study, we evaluated the effects of fructose intake on the sleep⁻wake cycle, locomotion, and neurochemical parameters in Wistar rats. The experimental group was fed with 10% fructose in drinking water for five weeks. After treatment, metabolic indicators were quantified in blood. Electroencephalographic recordings were used to evaluate the sleep architecture and the spectral power of frequency bands. Likewise, the locomotor activity and the concentrations of orexin A and monoamines were estimated. Our results show that fructose diet significantly increased the blood levels of glucose, cholesterol, and triglycerides. Fructose modified the sleep⁻wake cycle of rats, increasing the waking duration and conversely decreasing the non-rapid eye movement sleep. Furthermore, these effects were accompanied by increases of the spectral power at different frequency bands. Chronic consumption of fructose caused a slight increase in the locomotor activity as well as an increase of orexin A and dopamine levels in the hypothalamus and brainstem. Specifically, immunoreactivity for orexin A was increased in the ventral tegmental area after the intake of fructose. Our study suggests that fructose induces metabolic changes and stimulates the activity of orexinergic and dopaminergic neurons, which may be responsible for alterations of the sleep⁻wake cycle.


Assuntos
Encéfalo/efeitos dos fármacos , Açúcares da Dieta/farmacologia , Dopamina/metabolismo , Comportamento Alimentar , Frutose/farmacologia , Orexinas/metabolismo , Sono/efeitos dos fármacos , Animais , Glicemia/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Dieta , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Lipídeos/sangue , Locomoção/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos Wistar , Fases do Sono/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Vigília/efeitos dos fármacos
20.
Behav Brain Res ; 174(1): 86-92, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16920203

RESUMO

Acetaldehyde, the most toxic metabolite of ethanol, has been implicated in many toxic effects of ethanol. In the present study, we used rats to investigate the possible changes on the sleep-wake cycle and brain regional concentrations of noradrenaline and serotonin after intraperitoneal administration of several doses of acetaldehyde. Results showed that acetaldehyde significantly decreases the time spent in rapid eye movements sleep and wakefulness and increases the time spent in slow-wave sleep. The neurochemical analysis showed that acetaldehyde significantly increases the 5-hydroxyindolacetic acid content and 5-hydroxyindolacetic acid/serotonin ratio at the bulb and pons. These results suggest that acetaldehyde modifies the metabolism of serotonin which has been implicated in the onset and sustaining of the sleep episodes occurring along the sleep-wake cycle.


Assuntos
Acetaldeído/administração & dosagem , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Sono/efeitos dos fármacos , Animais , Química Encefálica/efeitos dos fármacos , Esquema de Medicação , Eletroencefalografia , Masculino , Polissonografia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa