Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Surg ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38328992

RESUMO

OBJECTIVE: This study aims to assess morphological and functional postoperative changes after open or minimally invasive (MIS) repair of esophageal atresia (EA) compared to healthy controls by thoracic real-time MRI. SUMMARY BACKGROUND DATA: Musculoskeletal deformities and pulmonary morbidity are common in children after EA repair. The real-time MRI is a novel technique that provides ultrafast, high-quality images during spontaneous breathing, without sedation even in young children. METHODS: Children aged 3-18 years were prospectively examined with a 3 Tesla MRI. Musculoskeletal deformities, static thoracic cross-sectional areas (CSA) at three different levels and lung volumes, as well as dynamic right-to-left ratio of CSA of hemithoraces and lung volumes during forced breathing were evaluated. RESULTS: 72 children (42 open, 8 MIS, 22 controls) were recruited. In the EA group, rib fusions and adhesions (78%, P<0.01) and scoliosis (15%, P=0.32) were found after thoracotomy, but not after MIS. Mean right-to-left ratio of CSA and lung volumes were lower after EA repair compared to controls (P <0.05), indicating impaired thoracic and lung development. The number of thoracotomies was a significant risk factor for smaller thoracic volumes (P<0.05). CONCLUSIONS: For the first time, morphological changes and thoracic motility after EA repair were visualized by dynamic real-time MRI. Children after EA repair show decreased right-sided thoracic and lung development compared to controls. Open repair leads to significantly more musculoskeletal deformities. This study emphasizes that musculoskeletal morbidity following a thoracotomy in infancy is high.

2.
Children (Basel) ; 11(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790506

RESUMO

In newborns, white matter shows a high T2-weighted (T2w) signal in MRI with poor grey-white matter contrast. To increase this contrast, an extremely long echo time (TE) is used in the examination of children. It is not known up to what age this long TE should be used. The purpose of this study was to find up to what age a long TE should be used in infants. In the prospective study, 101 infants (0-18 months) underwent cranial MRI at 3 Tesla. T2-weighted Fast Spin Echo sequences with long TE (200 ms) and medium TE (100 ms) were used. The signal intensities of the cortex and white matter were measured and the grey-white matter contrast (MC) was calculated. A cut-off age was determined. The T2w sequences with long TE had a statistically significantly higher MC until the age of six months (medium TE: 0.1 ± 0.05, Long TE: 0.19 ± 0.07; p < 0.001). After the tenth month, the T2w sequence with medium TE provided significantly better MC (Medium TE: 0.1 ± 0.05; long TE: 0.05 ± 0.4; p < 0.001). The use of a long TE is only helpful in the first six months of life. After the tenth month of life, a medium TE should be favored as is used in adult brain MRI.

3.
Children (Basel) ; 11(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255434

RESUMO

The most common acute infection and leading cause of death in children worldwide is pneumonia. Clinical and laboratory tests essentially diagnose community-acquired pneumonia (CAP). CAP can be caused by bacteria, viruses, or atypical microorganisms. Imaging is usually reserved for children who do not respond to treatment, need hospitalisation, or have hospital-acquired pneumonia. This review discusses the imaging findings for acute CAP complications and the diagnostic role of each imaging modality. Pleural effusion, empyema, necrotizing pneumonia, abscess, pneumatocele, pleural fistulas, and paediatric acute respiratory distress syndrome (PARDS) are acute CAP complications. When evaluating complicated CAP patients, chest radiography, lung ultrasonography, computed tomography (CT), and magnetic resonance imaging (MRI) can be used, with each having their own pros and cons. Imaging is usually not needed for CAP diagnosis, but it is essential for complicated cases and follow-ups. Lung ultrasound can supplement chest radiography (CR), which starts the diagnostic algorithm. Contrast-enhanced computed tomography (CECT) is used for complex cases. Advances in MRI protocols make it a viable alternative for diagnosing CAP and its complications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa