Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613250

RESUMO

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Assuntos
Anfíbios , Conservação dos Recursos Naturais , Genética Populacional , Mamíferos , Densidade Demográfica , Animais , Anfíbios/genética , Anfíbios/classificação , Mamíferos/genética , Mamíferos/classificação , Fluxo Gênico , Aves/genética , Aves/classificação , Humanos , Endogamia , Deriva Genética , Plantas/genética , Plantas/classificação , Atividades Humanas
2.
Ecol Appl ; 34(2): e2936, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071739

RESUMO

Predicting the persistence of species under climate change is an increasingly important objective in ecological research and management. However, biotic and abiotic heterogeneity can drive asynchrony in population responses at small spatial scales, complicating species-level assessments. For widely distributed species consisting of many fragmented populations, such as brook trout (Salvelinus fontinalis), understanding the drivers of asynchrony in population dynamics can improve the predictions of range-wide climate impacts. We analyzed the demographic time series from mark-recapture surveys of 11 natural brook trout populations in eastern Canada over 13 years to examine the extent, drivers, and consequences of fine-scale population variation. The focal populations were genetically differentiated, occupied a small area (~25 km2 ) with few human impacts, and experienced similar climate conditions. Recruitment was highly asynchronous, weakly related to climate variables and showed population-specific relationships with other demographic processes, generating diverse population dynamics. In contrast, individual growth was mostly synchronized among populations and driven by a shared positive relationship with stream temperature. Outputs from population-specific models were unrelated to four of the five hypothesized drivers (recruitment, growth, reproductive success, phylogenetic distance), but variation in groundwater inputs strongly influenced stream temperature regimes and stock-recruitment relationships. Finally, population asynchrony generated a portfolio effect that stabilized regional species abundance. Our results demonstrated that population demographics and habitat diversity at microgeographic scales can play a significant role in moderating species responses to climate change. Moreover, we suggest that the absence of human activities within study streams preserved natural habitat variation and contributed to asynchrony in brook trout abundance, while the small study area eased monitoring and increased the likelihood of detecting asynchrony. Therefore, anthropogenic habitat degradation, landscape context, and spatial scale must be considered when developing management strategies to monitor and maintain populations that are diverse, stable, and resilient to climate change.


Assuntos
Água Doce , Rios , Animais , Humanos , Filogenia , Efeitos Antropogênicos , Peixes , Dinâmica Populacional
3.
J Fish Biol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599588

RESUMO

Understanding recruitment, the process by which individuals are added to a population or to a fishery, is critical for understanding population dynamics and facilitating sustainable fisheries management. Important variation in recruitment dynamics is observed among populations, wherein some populations exhibit asymptotic productivity and others exhibit overcompensation (i.e., compensatory density-dependence in recruitment). Our ability to understand this interpopulation variability in recruitment patterns is limited by a poor understanding of the underlying mechanisms, such as the complex interactions between density dependence, recruitment, and environment. Furthermore, most studies on recruitment are conducted using an observational design with long time series that are seldom replicated across populations in an experimentally controlled fashion. Without proper replication, extrapolations between populations are tenuous, and the underlying environmental trends are challenging to quantify. To address these issues, we conducted a field experiment manipulating stocking densities of juvenile brook trout Salvelinus fontinalis in three wild populations to show that these neighboring populations-which exhibit divergent patterns of density dependence due to environmental conditions-also have important differences in recruitment dynamics. Testing against four stock-recruitment models (density independent, linear, Beverton-Holt, and Ricker), populations exhibited ~twofold variation in asymptotic productivity, with no overcompensation following a Beverton-Holt model. Although environmental variables (e.g., temperature, pH, depth, substrate) correlated with population differences in recruitment, they did not improve the predictive power in individual populations. Comparing our patterns of recruitment with classic salmonid case studies revealed that despite differences in the shape and parameters of the curves (i.e., Ricker vs. Beverton-Holt), a maximum stocking density of about five YOY fish/m2 emerged. Higher densities resulted in very marginal increases in recruitment (Beverton-Holt) or reduced recruitment due to overcompensation (Ricker).

4.
Mol Ecol ; 32(16): 4557-4569, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365672

RESUMO

The broad scale distribution of population-specific genetic diversity (GDP ) across taxa remains understudied relative to species diversity gradients, despite its relevance for systematic conservation planning. We used nuclear DNA data collected from 3678 vertebrate populations across the Americas to assess the role of environmental and spatial variables in structuring the distribution of GDP , a key component of adaptive potential in the face of environmental change. We specifically assessed non-linear trends for a metric of GDP, expected heterozygosity (HE ), and found more evidence for spatial hotspots and cold spots in HE rather than a strict pattern with latitude. We also detected inconsistent relationships between HE and environmental variables, where only 11 of 30 environmental comparisons among taxa groups were statistically significant at the .05 level, and the shape of significant trends differed substantially across vertebrate groups. Only one of six taxonomic groups, freshwater fishes, consistently showed significant relationships between HE and most (four of five) environmental variables. The remaining groups had statistically significant relationships for either two (amphibians, reptiles), one (birds, mammals), or no variables (anadromous fishes). Our study highlights gaps in the theoretical foundation upon which macrogenetic predictions have been made thus far in the literature, as well as the nuances for assessing broad patterns in GDP among vertebrate groups. Overall, our results suggest a disconnect between patterns of species and genetic diversity, and underscores that large-scale factors affecting genetic diversity may not be the same factors as those shaping taxonomic diversity. Thus, careful spatial and taxonomic-specific considerations are needed for applying macrogenetics to conservation planning.


Assuntos
Biodiversidade , Vertebrados , Animais , Vertebrados/genética , Anfíbios , Mamíferos , América , Peixes , Genética Populacional , Variação Genética/genética
5.
Glob Chang Biol ; 28(24): 7250-7269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151941

RESUMO

Salmonids are of immense socio-economic importance in much of the world, but are threatened by climate change. This has generated a substantial literature documenting the effects of climate variation on salmonid productivity in freshwater ecosystems, but there has been no global quantitative synthesis across studies. We conducted a systematic review and meta-analysis to gain quantitative insight into key factors shaping the effects of climate on salmonid productivity, ultimately collecting 1321 correlations from 156 studies, representing 23 species across 24 countries. Fisher's Z was used as the standardized effect size, and a series of weighted mixed-effects models were compared to identify covariates that best explained variation in effects. Patterns in climate effects were complex and were driven by spatial (latitude, elevation), temporal (time-period, age-class), and biological (range, habitat type, anadromy) variation within and among study populations. These trends were often consistent with predictions based on salmonid thermal tolerances. Namely, warming and decreased precipitation tended to reduce productivity when high temperatures challenged upper thermal limits, while opposite patterns were common when cold temperatures limited productivity. Overall, variable climate impacts on salmonids suggest that future declines in some locations may be counterbalanced by gains in others. In particular, we suggest that future warming should (1) increase salmonid productivity at high latitudes and elevations (especially >60° and >1500 m), (2) reduce productivity in populations experiencing hotter and dryer growing season conditions, (3) favor non-native over native salmonids, and (4) impact lentic populations less negatively than lotic ones. These patterns should help conservation and management organizations identify populations most vulnerable to climate change, which can then be prioritized for protective measures. Our framework enables broad inferences about future productivity that can inform decision-making under climate change for salmonids and other taxa, but more widespread, standardized, and hypothesis-driven research is needed to expand current knowledge.


Assuntos
Ecossistema , Salmonidae , Animais , Água Doce , Mudança Climática , Estações do Ano
6.
J Evol Biol ; 34(3): 439-450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33274531

RESUMO

Phenotypic reaction norms are often shaped and constrained by selection and are important for allowing organisms to respond to environmental change. However, selection cannot constrain reaction norms for environmental conditions that populations have not experienced. Consequently, cryptic neutral genetic variation for the reaction norm can accumulate such that a release of phenotypic variation occurs upon exposure to novel14 conditions. Most genomic diversity behaves as if functionally neutral. Therefore, genome-wide diversity metrics may correlate with levels of cryptic genetic variation and, as a result, exhibit a positive relationship with a release of phenotypic variation in novel environments. To test this hypothesis, we conducted translocations of juvenile brook trout (Salvelinus fontinalis) from 12 populations to novel uninhabited ponds that represented a gradient of environmental conditions. We assessed reaction norms for morphological traits (body size and four morphometric relative warps) across pond environmental gradients and evaluated the effect of genome-wide heterozygosity on phenotypic variability. All traits displayed plastic reaction norms. Overall, we found some evidence that a release of phenotypic variation consistent with cryptic genetic variation can occur in novel environmental conditions. However, the extent to which this release correlated with average genome-wide diversity was limited to only one of five traits examined. Our results suggest a limited link between genomic diversity26 and the accumulation of cryptic genetic variation in reaction norms. Similarly, reaction norms were constrained for many of the morphological traits examined. Past conditions may have constrained reaction norms in the putatively novel environments despite significant deviations from contemporary source population habitat. Additionally, as a generalist colonizing species brook trout may exhibit plastic phenotypes across a wide range of environmental conditions.


Assuntos
Adaptação Fisiológica , Interação Gene-Ambiente , Variação Genética , Truta/genética , Animais , Tamanho Corporal , Genoma/imunologia
7.
J Anim Ecol ; 89(2): 541-552, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31642512

RESUMO

Important variation in the shape and strength of density-dependent growth and mortality is observed across animal populations. Understanding this population variation is critical for predicting density-dependent relationships in natural populations, but comparisons amongst studies are challenging as studies differ in methodologies and in local environmental conditions. Consequently, it is unclear whether: (a) the shape and strength of density-dependent growth and mortality are population-specific; (b) the potential trade-off between density-dependent growth and mortality differs amongst populations; and (c) environmental characteristics can be related to population differences in density-dependent relationships. To elucidate these uncertainties, we manipulated the density (0.3-7 fish/ m2 ) of young-of-the-year brook trout (Salvelinus fontinalis) simultaneously in three neighbouring populations in a field experiment in Newfoundland, Canada. Within each population, our experiment included both spatial (three sites per stream) and temporal (three consecutive summers) replication. We detected temporally consistent population variation in the shape of density-dependent growth (negative linear and negative logarithmic), but not for mortality (positive logarithmic). The strength of density-dependent growth across populations was reduced in sections with a high percentage of boulder substrate, whereas density-dependent mortality increased with increasing flow, water temperature and more acidic pH. Neighbouring populations exhibited different mortality-growth trade-offs: the ratio of mortality-to-growth increased linearly with increasing density at different rates across populations (up to 4-fold differences), but also increased with increasing temperature. Our results are some of the first to demonstrate temporally consistent, population-specific density-dependent relationships and trade-offs at small spatial scales that match the magnitude of interspecific variation observed across the globe. Furthermore, key environmental characteristics explain some of these differences in predictable ways. Such population differences merit further attention in models of density dependence and in science-based management of animal populations.


Assuntos
Ecossistema , Rios , Animais , Canadá , Terra Nova e Labrador , Densidade Demográfica , Truta
8.
Am Nat ; 194(4): 495-515, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31490718

RESUMO

Evolutionary biologists have long trained their sights on adaptation, focusing on the power of natural selection to produce relative fitness advantages while often ignoring changes in absolute fitness. Ecologists generally have taken a different tack, focusing on changes in abundance and ranges that reflect absolute fitness while often ignoring relative fitness. Uniting these perspectives, we articulate various causes of relative and absolute maladaptation and review numerous examples of their occurrence. This review indicates that maladaptation is reasonably common from both perspectives, yet often in contrasting ways. That is, maladaptation can appear strong from a relative fitness perspective, yet populations can be growing in abundance. Conversely, resident individuals can appear locally adapted (relative to nonresident individuals) yet be declining in abundance. Understanding and interpreting these disconnects between relative and absolute maladaptation, as well as the cases of agreement, is increasingly critical in the face of accelerating human-mediated environmental change. We therefore present a framework for studying maladaptation, focusing in particular on the relationship between absolute and relative fitness, thereby drawing together evolutionary and ecological perspectives. The unification of these ecological and evolutionary perspectives has the potential to bring together previously disjunct research areas while addressing key conceptual issues and specific practical problems.


Assuntos
Adaptação Biológica , Evolução Biológica , Fenômenos Ecológicos e Ambientais , Aptidão Genética , Seleção Genética
9.
Mol Ecol ; 26(23): 6499-6501, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29243868

RESUMO

Is a key theory of evolutionary and conservation biology-that loss of genetic diversity can be predicted from population size-on shaky ground? In the face of increasing human-induced species depletion and habitat fragmentation, this question and the study of genetic diversity in small populations are paramount to understanding the limits of species' responses to environmental change and to providing remedies to endangered species conservation. Few empirical studies have investigated to what degree some small populations might be buffered against losses of genetic diversity. Even fewer studies have experimentally tested the potential underlying mechanisms. The study of Schou, Loeschcke, Bechsgaard, Schlotterer, and Kristensen () in this issue of Molecular Ecology is elegant in combining classic common garden experimentation with population genomics on an iconic experimental model species (Drosophila melanogaster). The authors reveal a slower rate of loss of genetic diversity in small populations under varying thermal regimes than theoretically expected and hence an unexpected retention of genetic diversity. They are further able to hone in on a plausible mechanism: associative overdominance, wherein homozygosity of deleterious recessive alleles is especially disfavoured in genomic regions of low recombination. These results contribute to a budding literature on the varying mechanisms underlying genetic diversity in small populations and encourage further such research towards the effective management and conservation of fragmented or endangered populations.


Assuntos
Variação Genética , Genética Populacional , Animais , Drosophila melanogaster , Espécies em Perigo de Extinção , Humanos , Densidade Demográfica
10.
Mol Ecol ; 25(18): 4472-87, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27483203

RESUMO

Adult census population size (N) and effective number of breeders (Nb ) are highly relevant for designing effective conservation strategies. Both parameters are often challenging to quantify, however, making it of interest to determine whether one parameter can be generalized from the other. Yet, the spatiotemporal relationship between N and Nb has not been well characterized empirically in many taxa. We analysed this relationship for 5-7 consecutive years in twelve brook trout populations varying greatly in N (49-10032) and Nb (3-567) and identified major environmental variables affecting the two parameters. N or habitat size alone explained 47-57% of the variance in Nb , and Nb was strongly correlated with effective population size. The ratio Nb /N ranged from 0.01 to 0.45 and increased at small N or following an annual decrease in N, suggesting density-dependent constraints on Nb . We found no evidence for a consistent, directional difference between variability in Nb and/or Nb /N among small and large populations; however, small populations had more varying temporal variability in Nb /N ratios than large populations. Finally, Nb and Nb /N were 2.5- and 2.3-fold more variable among populations than temporally within populations. Our results demonstrate a clear linkage between demographic and evolutionary parameters, suggesting that Nb could be used to approximate N (or vice versa) in natural populations. Nevertheless, using one variable to infer the other to monitor trends within populations is less recommended, perhaps even less so in small populations given their less predictable Nb vs. N dynamics.


Assuntos
Genética Populacional , Truta/genética , Animais , Ecossistema , Terra Nova e Labrador , Densidade Demográfica , Análise Espaço-Temporal
11.
Ecology ; 96(4): 1010-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26230021

RESUMO

The potential influence of population size on the magnitude of phenotypic plasticity, a key factor in adaptation to environmental change, has rarely been studied. Conventionally, small populations might exhibit consistently lower plasticity than large populations if small population habitats are generally poor in quality and if genetic diversity underpinning plasticity is lost as population size is reduced. Alternatively, small populations might exhibit (1) consistently higher plasticity as a response to the increased environmental variation that can accompany habitat fragment size reduction or (2) greater variability in plasticity, as fragmentation can increase variability in habitat types. We explored these alternatives by investigating plasticity to increasing temperature in a common garden experiment using eight fragmented populations of brook trout varying nearly 50-fold in census size (179-8416) and 10-fold in effective number of breeders (18-135). Across six early-life-history traits and three temperatures, we found almost no evidence for differences in either the magnitude or variability of plasticity in relation to population size, despite that one temperature represented an extreme climate warming scenario. The documentation of similar plastic responses of small and large populations suggests that phenotypic plasticity is not reduced as population size decreases, and that even very small populations of some species might have the ability to respond to climate change.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Truta/fisiologia , Animais , Densidade Demográfica , Reprodução , Rios
12.
Proc Biol Sci ; 281(1790)2014 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-25056619

RESUMO

Whether and how habitat fragmentation and population size jointly affect adaptive genetic variation and adaptive population differentiation are largely unexplored. Owing to pronounced genetic drift, small, fragmented populations are thought to exhibit reduced adaptive genetic variation relative to large populations. Yet fragmentation is known to increase variability within and among habitats as population size decreases. Such variability might instead favour the maintenance of adaptive polymorphisms and/or generate more variability in adaptive differentiation at smaller population size. We investigated these alternative hypotheses by analysing coding-gene, single-nucleotide polymorphisms associated with different biological functions in fragmented brook trout populations of variable sizes. Putative adaptive differentiation was greater between small and large populations or among small populations than among large populations. These trends were stronger for genetic population size measures than demographic ones and were present despite pronounced drift in small populations. Our results suggest that fragmentation affects natural selection and that the changes elicited in the adaptive genetic composition and differentiation of fragmented populations vary with population size. By generating more variable evolutionary responses, the alteration of selective pressures during habitat fragmentation may affect future population persistence independently of, and perhaps long before, the effects of demographic and genetic stochasticity are manifest.


Assuntos
Ecossistema , Genética Populacional , Densidade Demográfica , Truta/genética , Adaptação Biológica , Animais , Evolução Biológica , Deriva Genética , Terra Nova e Labrador , Polimorfismo Genético , Rios
13.
Ecol Appl ; 24(5): 1085-100, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25154098

RESUMO

The relationship between habitat variability and population size in fragmented habitats is poorly understood, yet might have important evolutionary consequences. For instance, fragmentation could (1) shift habitat characteristics, and by extension, selective regimes, in a consistent direction as populations and the fragments they occupy are reduced in size (directional hypothesis): or (2) increase variability in habitats among similarly sized populations as fragment size decreases (variable hypothesis). We investigated these alternatives based on multiyear habitat, demographic, and genetic data from 19 fragmented populations of a stream fish varying in census size (N) and effective number of breeders (N(b)). Mean habitat parameters were significantly related to N and N(b), but the forms of the relationships varied, and there was no evidence of consistent directional differences in habitat parameters from small to large population size. Small populations exhibited a wider range of variances in habitat parameters than large populations, and to a lesser extent, small populations also had greater variability in mean habitat parameters, possibly signaling more diverse selective regimes. These results suggest that many different environments are associated with small population size in nature, counter to the frequently cited assumption that small populations tend to occur only in marginal environments. In addition to well-documented demographic and genetic stochasticity operating within small populations, our work raises the possibility that small populations exhibit more variable and potentially less predictable evolutionary responses to future environmental change.


Assuntos
Ecossistema , Peixes , Animais , Demografia , Densidade Demográfica , Rios
14.
Mol Ecol ; 21(11): 2574-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22519555

RESUMO

Escaped domesticated individuals can introduce disadvantageous traits into wild populations due to both adaptive differences between population ancestors and human-induced changes during domestication. In contrast to their domesticated counterparts, some endangered wild Atlantic salmon populations encounter during their marine stage large amounts of suspended sediments, which may act as a selective agent. We used microarrays to elucidate quantitative transcriptional differences between a domesticated salmon strain, a wild population and their first-generation hybrids during their marine life stage, to describe transcriptional responses to natural suspended sediments, and to test for adaptive genetic variation in plasticity relating to a history of natural exposure or nonexposure to suspended sediments. We identified 67 genes differing in transcription level among salmon groups. Among these genes, processes related to energy metabolism and ion homoeostasis were over-represented, while genes contributing to immunity and actin-/myosin-related processes were also involved in strain differentiation. Domestic-wild hybrids exhibited intermediate transcription patterns relative to their parents for two-thirds of all genes that differed between their parents; however, genes deviating from additivity tended to have similar levels to those expressed by the wild parent. Sediments induced increases in transcription levels of eight genes, some of which are known to contribute to external or intracellular damage mitigation. Although genetic variation in plasticity did not differ significantly between groups after correcting for multiple comparisons, two genes (metallothionein and glutathione reductase) tended to be more plastic in response to suspended sediments in wild and hybrid salmon, and merit further examination as candidate genes under natural selection.


Assuntos
Interação Gene-Ambiente , Salmo salar/genética , Animais , Animais Selvagens , Aquicultura , Quimera , Meio Ambiente , Regulação da Expressão Gênica , Variação Genética , Salmo salar/fisiologia , Seleção Genética , Transcrição Gênica
15.
Ecol Evol ; 12(2): e8584, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154655

RESUMO

Understanding the drivers of successful species invasions is important for conserving native biodiversity and for mitigating the economic impacts of introduced species. However, whole-genome resolution investigations of the underlying contributions of neutral and adaptive genetic variation in successful introductions are rare. Increased propagule pressure should result in greater neutral genetic variation, while environmental differences should elicit selective pressures on introduced populations, leading to adaptive differentiation. We investigated neutral and adaptive variation among nine introduced brook trout (Salvelinus fontinalis) populations using whole-genome pooled sequencing. The populations inhabit isolated alpine lakes in western Canada and descend from a common source, with an average of ~19 (range of 7-41) generations since introduction. We found some evidence of bottlenecks without recovery, no strong evidence of purifying selection, and little support that varying propagule pressure or differences in local environments shaped observed neutral genetic variation differences. Putative adaptive loci analysis revealed nonconvergent patterns of adaptive differentiation among lakes with minimal putatively adaptive loci (0.001%-0.15%) that did not correspond with tested environmental variables. Our results suggest that (i) introduction success is not always strongly influenced by genetic load; (ii) observed differentiation among introduced populations can be idiosyncratic, population-specific, or stochastic; and (iii) conservatively, in some introduced species, colonization barriers may be overcome by support through one aspect of propagule pressure or benign environmental conditions.

16.
Evol Appl ; 15(11): 1792-1805, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426123

RESUMO

Sustainable management of exploited populations benefits from integrating demographic and genetic considerations into assessments, as both play a role in determining harvest yields and population persistence. This is especially important in populations subject to size-selective harvest, because size selective harvesting has the potential to result in significant demographic, life-history, and genetic changes. We investigated harvest-induced changes in the effective number of breeders ( N ^ b ) for introduced brook trout populations (Salvelinus fontinalis) in alpine lakes from western Canada. Three populations were subject to 3 years of size-selective harvesting, while three control populations experienced no harvest. The N ^ c decreased consistently across all harvested populations (on average 60.8%) but fluctuated in control populations. There were no consistent changes in N ^ b between control or harvest populations, but one harvest population experienced a decrease in N ^ b of 63.2%. The N ^ b / N ^ c ratio increased consistently across harvest lakes; however we found no evidence of genetic compensation (where variance in reproductive success decreases at lower abundance) based on changes in family evenness ( FE ^ ) and the number of full-sibling families ( N ^ fam ). We found no relationship between FE ^ and N ^ c or between N ^ fam / N ^ c and FE ^ . We posit that change in N ^ b was buffered by constraints on breeding habitat prior to harvest, such that the same number of breeding sites were occupied before and after harvest. These results suggest that effective size in harvested populations may be resilient to considerable changes in Nc in the short-term, but it is still important to monitor exploited populations to assess the risk of inbreeding and ensure their long-term survival.

17.
Evol Appl ; 14(3): 653-657, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33767741

RESUMO

Investigating whether changes within fish populations may result from harvesting requires a comprehensive approach, especially in more data-sparse northern regions. Our study took a three-pronged approach to investigate walleye population change by combining Indigenous knowledge (IK), phenotypic traits, and genomics. We thank Larson et al. (2020) for their critiques of our study; certainly, there are aspects of their critique that are warranted and merit further investigation. However, we argue that their critique is over-stated and misleading, primarily given that (a) one of three prongs of our research, IK, was dismissed in their assessment of our study's conclusions; (b) our Bayesian size-at-age modeling should help to mitigate sample size issues; (c) their re-analysis of our size-at-age data does not actually refute our results; (d) genomic changes that we observed are nascent; (e) the data file that Larson et al. (2020) used for their genomic re-analysis was not correct; and (f) criteria that Larson et al. (2020) use for their genomic re-analysis were not properly justified.

18.
Evol Appl ; 14(6): 1659-1672, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178111

RESUMO

Road networks and human density are major factors contributing to habitat fragmentation and loss, isolation of wildlife populations, and reduced genetic diversity. Terrestrial mammals are particularly sensitive to road networks and encroachment by human populations. However, there are limited assessments of the impacts of road networks and human density on population-specific nuclear genetic diversity, and it remains unclear how these impacts are modulated by life-history traits. Using generalized linear mixed models and microsatellite data from 1444 North American terrestrial mammal populations, we show that taxa with large home range sizes, dense populations, and large body sizes had reduced nuclear genetic diversity with increasing road impacts and human density, but the overall influence of life-history traits was generally weak. Instead, we observed a high degree of genus-specific variation in genetic responses to road impacts and human density. Human density negatively affected allelic diversity or heterozygosity more than road networks (13 vs. 5-7 of 25 assessed genera, respectively); increased road networks and human density also positively affected allelic diversity and heterozygosity in 15 and 6-9 genera, respectively. Large-bodied, human-averse species were generally more negatively impacted than small, urban-adapted species. Genus-specific responses to habitat fragmentation by ongoing road development and human encroachment likely depend on the specific capability to (i) navigate roads as either barriers or movement corridors, and (ii) exploit resource-rich urban environments. The nonuniform genetic response to roads and human density highlights the need to implement efforts to mitigate the risk of vehicular collisions, while also facilitating gene flow between populations of particularly vulnerable taxa.

19.
PLoS One ; 16(11): e0259792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34780489

RESUMO

Local support is critical to the success and longevity of fishery management initiatives. Previous research suggests that how resource users perceive ecological changes, explain them, and cope with them, influences local support. The objectives of this study were two-fold. First, we collated local fishers' knowledge to characterize the long-term socio-ecological dynamics of the small-scale fishery of Sainte-Marie Island, in Madagascar. Second, we empirically assessed the individual- and site-level factors influencing support for fishery restrictions. Our results indicate that fishers observed a decline in fish abundance and catch sizes, especially in nearshore areas; many also perceived a reduction in fish sizes and the local disappearance of species. To maintain their catches, most fishers adapted by fishing harder and further offshore. Accordingly, fishers identified increased fishing effort (number of fishers and gear evolution) as the main cause of fishery changes. Collectively, our results highlight that the transition from a subsistence to commercial fishery, and resulting changes in the relationship between people and the fisheries, was an underlying driver of fishery changes. Additionally, we found that gender, membership to local associations, coping mechanisms, and perceptions of ecological health, were all interlinked and significantly associated with conservation-oriented attitudes. Conservation-oriented attitudes, however, were not associated with fishers' willingness to decrease fishing. In the short-term, area-based restrictions could contribute to building support for conservation. In the long-term, addressing the underlying causes of the decline will necessitate collaborations among the various groups involved to progressively build livelihood flexibility. Collectively, our study provides additional insights on the individual- and site-level factors influencing support for fishery restrictions. It also highlights the importance of dialoguing with fishers to ensure that fishery management plans are adapted to the local context.


Assuntos
Pesqueiros , Adaptação Psicológica , Animais , Madagáscar , Resolução de Problemas
20.
Ecol Appl ; 20(4): 935-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20597281

RESUMO

Theory predicts that hybrid fitness should decrease as population divergence increases. This suggests that the effects of human-induced hybridization might be adequately predicted from the known divergence among parental populations. We tested this prediction by quantifying trait differentiation between multigenerational crosses of farmed Atlantic salmon (Salmo salar) and divergent wild populations from the Northwest Atlantic; the former escape repeatedly into the wild, while the latter are severely depleted. Under common environmental conditions and at the spatiotemporal scale considered (340 km, 12 000 years of divergence), substantial cross differentiation had a largely additive genetic basis at behavioral, life history, and morphological traits. Wild backcrossing did not completely restore hybrid trait distributions to presumably more optimal wild states. Consistent with theory, the degree to which hybrids deviated in absolute terms from their parental populations increased with increasing parental divergence (i.e., the collective environmental and life history differentiation, genetic divergence, and geographic distance between parents). Nevertheless, while these differences were predictable, their implications for risk assessment were not: wild populations that were equally divergent from farmed salmon in the total amount of divergence differed in the specific traits at which this divergence occurred. Combined with ecological data on the rate of farmed escapes and wild population trends, we thus suggest that the greatest utility of hybridization data for risk assessment may be through their incorporation into demographic modeling of the short- and long-term consequences to wild population persistence. In this regard, our work demonstrates that detailed hybridization data are essential to account for life-stage-specific changes in phenotype or fitness within divergent but interrelated groups of wild populations. The approach employed here will be relevant to risk assessments in a range of wild species where hybridization with domesticated relatives is a concern, especially where the conservation status of the wild species may preclude direct fitness comparisons in the wild.


Assuntos
Animais Selvagens , Tamanho Corporal , Pesqueiros , Hibridização Genética , Salmo salar/genética , Animais , Oceano Atlântico , Feminino , Humanos , Novo Brunswick , Nova Escócia , Óvulo/crescimento & desenvolvimento , Salmo salar/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa