Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genomics ; 116(1): 110781, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38182036

RESUMO

Nile tilapia is one of the most important aquaculture species globally, providing high-quality animal protein for human nutrition and a source of income to sustain the livelihoods of many people in low- and middle-income countries. This species is native to Africa and nowadays farmed throughout the world. However, the genetic makeup of its native populations remains poorly characterized. Additionally, there has been important introgression and movement of farmed (as well as wild) strains connected to tilapia aquaculture in Africa, yet the relationship between wild and farmed populations is unknown in most of the continent. Genetic characterization of the species in Africa has the potential to support the conservation of the species as well as supporting selective breeding to improve the indigenous strains for sustainable and profitable aquaculture production. In the current study, a total of 382 fish were used to investigate the genetic structure, diversity, and ancestry within and between Ugandan Nile tilapia populations from three major lakes including Lake Albert (L. Albert), Lake Kyoga (L. Kyoga) and Lake Victoria (L. Victoria), and 10 hatchery farms located in the catchment regions of these lakes. Our results showed clear genetic structure of the fish sourced from the lakes, with L. Kyoga and L. Albert populations showing higher genetic similarity. We also observed noticeable genetic structure among farmed populations, with most of them being genetically similar to L. Albert and L. Kyoga fish. Admixture results showed a higher (2.55-52.75%) contribution of L. Albert / L. Kyoga stocks to Uganda's farmed fish than the stock from L. Victoria (2.12-28.02%). We observed relatively high genetic diversity across both wild and farmed populations, but some farms had sizable numbers of highly inbred fish, raising concerns about management practices. In addition, we identified a genomic region on chromosome 5, harbouring the key innate immune gene BPI and the key growth gene GHRH, putatively under selection in the Ugandan Nile tilapia population. This region overlaps with the genomic region previously identified to be associated with growth rate in farmed Nile tilapia.


Assuntos
Ciclídeos , Humanos , Animais , Ciclídeos/genética , Uganda , Aquicultura , Cruzamento , Variação Genética
2.
Genet Sel Evol ; 55(1): 59, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580697

RESUMO

BACKGROUND: Flavobacterium columnare is the pathogen agent of columnaris disease, a major emerging disease that affects rainbow trout aquaculture. Selective breeding using genomic selection has potential to achieve cumulative improvement of the host resistance. However, genomic selection is expensive partly because of the cost of genotyping large numbers of animals using high-density single nucleotide polymorphism (SNP) arrays. The objective of this study was to assess the efficiency of genomic selection for resistance to F. columnare using in silico low-density (LD) panels combined with imputation. After a natural outbreak of columnaris disease, 2874 challenged fish and 469 fish from the parental generation (n = 81 parents) were genotyped with 27,907 SNPs. The efficiency of genomic prediction using LD panels was assessed for 10 panels of different densities, which were created in silico using two sampling methods, random and equally spaced. All LD panels were also imputed to the full 28K HD panel using the parental generation as the reference population, and genomic predictions were re-evaluated. The potential of prioritizing SNPs that are associated with resistance to F. columnare was also tested for the six lower-density panels. RESULTS: The accuracies of both imputation and genomic predictions were similar with random and equally-spaced sampling of SNPs. Using LD panels of at least 3000 SNPs or lower-density panels (as low as 300 SNPs) combined with imputation resulted in accuracies that were comparable to those of the 28K HD panel and were 11% higher than the pedigree-based predictions. CONCLUSIONS: Compared to using the commercial HD panel, LD panels combined with imputation may provide a more affordable approach to genomic prediction of breeding values, which supports a more widespread adoption of genomic selection in aquaculture breeding programmes.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Genoma , Genótipo , Genômica/métodos , Polimorfismo de Nucleotídeo Único
4.
Genet Sel Evol ; 51(1): 26, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170906

RESUMO

BACKGROUND: Selective breeding is a relatively recent practice in aquaculture species compared to terrestrial livestock. Nevertheless, the genetic variability of farmed salmonid lines, which have been selected for several generations, should be assessed. Indeed, a significant decrease in genetic variability due to high selection intensity could have occurred, potentially jeopardizing the long-term genetic progress as well as the adaptive capacities of populations facing change(s) in the environment. Thus, it is important to evaluate the impact of selection practices on genetic diversity to limit future inbreeding. The current study presents an analysis of genetic diversity within and between six French rainbow trout (Oncorhynchus mykiss) experimental or commercial lines based on a medium-density single nucleotide polymorphism (SNP) chip and various molecular genetic indicators: fixation index (FST), linkage disequilibrium (LD), effective population size (Ne) and inbreeding coefficient derived from runs of homozygosity (ROH). RESULTS: Our results showed a moderate level of genetic differentiation between selected lines (FST ranging from 0.08 to 0.15). LD declined rapidly over the first 100 kb, but then remained quite high at long distances, leading to low estimates of Ne in the last generation ranging from 24 to 68 depending on the line and methodology considered. These results were consistent with inbreeding estimates that varied from 10.0% in an unselected experimental line to 19.5% in a commercial line, and which are clearly higher than corresponding estimates in ruminants or pigs. In addition, strong variations in LD and inbreeding were observed along the genome that may be due to differences in local rates of recombination or due to key genes that tended to have fixed favorable alleles for domestication or production. CONCLUSIONS: This is the first report on ROH for any aquaculture species. Inbreeding appeared to be moderate to high in the six French rainbow trout lines, due to founder effects at the start of the breeding programs, but also likely to sweepstakes reproductive success in addition to selection for the selected lines. Efficient management of inbreeding is a major goal in breeding programs to ensure that populations can adapt to future breeding objectives and SNP information can be used to manage the rate at which inbreeding builds up in the fish genome.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Seleção Artificial , Truta/genética , Animais , Desequilíbrio de Ligação
5.
Genet Sel Evol ; 50(1): 60, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30445909

RESUMO

BACKGROUND: Bacterial cold-water disease, which is caused by Flavobacterium psychrophilum, is one of the major diseases that affect rainbow trout (Oncorhynchus mykiss) and a primary concern for trout farming. Better knowledge of the genetic basis of resistance to F. psychrophilum would help to implement this trait in selection schemes and to investigate the immune mechanisms associated with resistance. Various studies have revealed that skin and mucus may contribute to response to infection. However, previous quantitative trait loci (QTL) studies were conducted by using injection as the route of infection. Immersion challenge, which is assumed to mimic natural infection by F. psychrophilum more closely, may reveal different defence mechanisms. RESULTS: Two isogenic lines of rainbow trout with contrasting susceptibilities to F. psychrophilum were crossed to produce doubled haploid F2 progeny. Fish were infected with F. psychrophilum either by intramuscular injection (115 individuals) or by immersion (195 individuals), and genotyped for 9654 markers using RAD-sequencing. Fifteen QTL associated with resistance traits were detected and only three QTL were common between the injection and immersion. Using a model that accounted for epistatic interactions between QTL, two main types of interactions were revealed. A "compensation-like" effect was detected between several pairs of QTL for the two modes of infection. An "enhancing-like" interaction effect was detected between four pairs of QTL. Integration of the QTL results with results of a previous transcriptomic analysis of response to F. psychrophilum infection resulted in a list of potential candidate immune genes that belong to four relevant functional categories (bacterial sensors, effectors of antibacterial immunity, inflammatory factors and interferon-stimulated genes). CONCLUSIONS: These results provide new insights into the genetic determinism of rainbow trout resistance to F. psychrophilum and confirm that some QTL with large effects are involved in this trait. For the first time, the role of epistatic interactions between resistance-associated QTL was evidenced. We found that the infection protocol used had an effect on the modulation of defence mechanisms and also identified relevant immune functional candidate genes.


Assuntos
Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Infecções por Flavobacteriaceae/veterinária , Flavobacterium/fisiologia , Oncorhynchus mykiss , Locos de Características Quantitativas , Animais , Resistência à Doença , Feminino , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/genética , Infecções por Flavobacteriaceae/imunologia , Genótipo , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Front Genet ; 14: 1194266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252666

RESUMO

Genomic selection can accelerate genetic progress in aquaculture breeding programmes, particularly for traits measured on siblings of selection candidates. However, it is not widely implemented in most aquaculture species, and remains expensive due to high genotyping costs. Genotype imputation is a promising strategy that can reduce genotyping costs and facilitate the broader uptake of genomic selection in aquaculture breeding programmes. Genotype imputation can predict ungenotyped SNPs in populations genotyped at a low-density (LD), using a reference population genotyped at a high-density (HD). In this study, we used datasets of four aquaculture species (Atlantic salmon, turbot, common carp and Pacific oyster), phenotyped for different traits, to investigate the efficacy of genotype imputation for cost-effective genomic selection. The four datasets had been genotyped at HD, and eight LD panels (300-6,000 SNPs) were generated in silico. SNPs were selected to be: i) evenly distributed according to physical position ii) selected to minimise the linkage disequilibrium between adjacent SNPs or iii) randomly selected. Imputation was performed with three different software packages (AlphaImpute2, FImpute v.3 and findhap v.4). The results revealed that FImpute v.3 was faster and achieved higher imputation accuracies. Imputation accuracy increased with increasing panel density for both SNP selection methods, reaching correlations greater than 0.95 in the three fish species and 0.80 in Pacific oyster. In terms of genomic prediction accuracy, the LD and the imputed panels performed similarly, reaching values very close to the HD panels, except in the pacific oyster dataset, where the LD panel performed better than the imputed panel. In the fish species, when LD panels were used for genomic prediction without imputation, selection of markers based on either physical or genetic distance (instead of randomly) resulted in a high prediction accuracy, whereas imputation achieved near maximal prediction accuracy independently of the LD panel, showing higher reliability. Our results suggests that, in fish species, well-selected LD panels may achieve near maximal genomic selection prediction accuracy, and that the addition of imputation will result in maximal accuracy independently of the LD panel. These strategies represent effective and affordable methods to incorporate genomic selection into most aquaculture settings.

7.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35666190

RESUMO

We present a comparative genetic analysis of the quantitative trait loci underlying resistance to warm water columnaris disease in 2 farmed rainbow trout (Oncorhynchus mykiss) populations. We provide evidence for the conservation of a major quantitative trait loci on Omy03, and the putative role played by a chromosomal rearrangement on Omy05. A total of 3,962 individuals from the 2 populations experienced a natural Flavobacterium columnare outbreak. Data for 25,823 genome-wide SNPs were generated for both cases (fatalities) and controls (survivors). FST and pairwise additive genetic relationships suggest that, despite being currently kept as separate broodstocks, the 2 populations are closely related. Association analyses identified a major quantitative trait loci on chromosome Omy03 and a second smaller quantitative trait loci on Omy05. Quantitative trait loci on Omy03 consistently explained 3-11% of genetic variation in both populations, whereas quantitative trait loci on Omy05 showed different degree of association across populations and sexes. The quantitative trait loci on Omy05 was found within a naturally occurring, 54.84 cM long inversion which is easy to tag due to a strong linkage disequilibrium between the 375 tagging SNPs. The ancestral haplotype on Omy05 was associated with decreased mortality. Genetic correlation between mortality in the 2 populations was estimated at 0.64, implying that the genetic basis of resistance is partly similar in the 2 populations. Our quantitative trait loci validation identifies markers that can be potentially used to complement breeding value evaluations to increase resistance against columnaris disease, and help to mitigate effects of climate change on aquaculture.


Assuntos
Oncorhynchus mykiss , Animais , Inversão Cromossômica , Cromossomos/genética , Resistência à Doença/genética , Oncorhynchus mykiss/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Front Genet ; 11: 677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754193

RESUMO

Infectious diseases represent a major threat for the sustainable development of fish farming. Efficient vaccines are not available against all diseases, and growing antibiotics resistance limits the use of antimicrobial drugs in aquaculture. It is therefore important to understand the basis of fish natural resistance to infections to help genetic selection and to develop new approaches against infectious diseases. However, the identification of the main mechanisms determining the resistance or susceptibility of a host to a pathogenic microbe is challenging, integrating the complexity of the variation of host genetics, the variability of pathogens, and their capacity of fast evolution and adaptation. Multiple approaches have been used for this purpose: (i) genetic approaches, QTL (quantitative trait loci) mapping or GWAS (genome-wide association study) analysis, to dissect the genetic architecture of disease resistance, and (ii) transcriptomics and functional assays to link the genetic constitution of a fish to the molecular mechanisms involved in its interactions with pathogens. To date, many studies in a wide range of fish species have investigated the genetic determinism of resistance to many diseases using QTL mapping or GWAS analyses. A few of these studies pointed mainly toward adaptive mechanisms of resistance/susceptibility to infections; others pointed toward innate or intrinsic mechanisms. However, in the majority of studies, underlying mechanisms remain unknown. By comparing gene expression profiles between resistant and susceptible genetic backgrounds, transcriptomics studies have contributed to build a framework of gene pathways determining fish responsiveness to a number of pathogens. Adding functional assays to expression and genetic approaches has led to a better understanding of resistance mechanisms in some cases. The development of knock-out approaches will complement these analyses and help to validate putative candidate genes critical for resistance to infections. In this review, we highlight fish isogenic lines as a unique biological material to unravel the complexity of host response to different pathogens. In the future, combining multiple approaches will lead to a better understanding of the dynamics of interaction between the pathogen and the host immune response, and contribute to the identification of potential targets of selection for improved resistance.

9.
Sci Rep ; 10(1): 17693, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077766

RESUMO

Rainbow trout has a male heterogametic (XY) sex determination system controlled by a major sex-determining gene, sdY. Unexpectedly, a few phenotypically masculinised fish are regularly observed in all-female farmed trout stocks. To better understand the genetic determinism underlying spontaneous maleness in XX-rainbow trout, we recorded the phenotypic sex of 20,210 XX-rainbow trout from a French farm population at 10 and 15 months post-hatching. The overall masculinisation rate was 1.45%. We performed two genome-wide association studies (GWAS) on a subsample of 1139 individuals classified as females, intersex or males using either medium-throughput genotyping (31,811 SNPs) or whole-genome sequencing (WGS, 8.7 million SNPs). The genomic heritability of maleness ranged between 0.48 and 0.62 depending on the method and the number of SNPs used for the estimation. At the 31K SNPs level, we detected four QTL on three chromosomes (Omy1, Omy12 and Omy20). Using WGS information, we narrowed down the positions of the two QTL detected on Omy1 to 96 kb and 347 kb respectively, with the second QTL explaining up to 14% of the total genetic variance of maleness. Within this QTL, we detected three putative candidate genes, fgfa8, cyp17a1 and an uncharacterised protein (LOC110527930), which might be involved in spontaneous maleness of XX-female rainbow trout.


Assuntos
Genótipo , Oncorhynchus mykiss/genética , Processos de Determinação Sexual , Sequenciamento Completo do Genoma , Animais , Feminino , Masculino , Fenótipo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa