Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 14(12): e1007821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30540754

RESUMO

Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.


Assuntos
Anemia de Fanconi/genética , Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Dano ao DNA , Anemia de Fanconi/fisiopatologia , Feminino , Fertilidade/genética , Fertilidade/fisiologia , Mutação da Fase de Leitura , Técnicas de Inativação de Genes , Humanos , Masculino , Fenótipo , Splicing de RNA/genética , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Desenvolvimento Sexual/genética , Desenvolvimento Sexual/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
2.
Cell Genom ; 2(9)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36212030

RESUMO

Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a "progenitor" cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear.

3.
J Am Assoc Lab Anim Sci ; 60(3): 298-305, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33653438

RESUMO

Over the past 2 decades, zebrafish, Danio rerio, have become a mainstream laboratory animal model, yet zebrafish husbandry practices remain far from standardized. Feeding protocols play a critical role in the health, wellbeing, and productivity of zebrafish laboratories, yet they vary significantly between facilities. In this study, we compared our current feeding protocol for juvenile zebrafish (30 dpf to 75 dpf), a 3:1mixture of fish flake and freeze-dried krill fed twice per day with live artemia twice per day (FKA), to a diet of Gemma Micro 300 fed once per day with live artemia once per day (GMA). Our results showed that juvenile EK wild-type zebrafish fed GMA were longer and heavier than juveniles fed FKA. As compared with FKA-fed juveniles, fish fed GMA as juveniles showed better reproductive performance as measured by spawning success, fertilization rate, and clutch size. As adults, fish from both feeding protocols were acclimated to our standard adult feeding protocol, and the long-term effects of juvenile diet were assessed. At 2 y of age, the groups showed no difference in mortality or fecundity. Reproductive performance is a crucial aspect of zebrafish research, as much of the research focuses on the developing embryo. Here we show that switching juvenile zebrafish from a mixture of flake and krill to Gemma Micro 300 improves reproductive performance, even with fewer feedings of live artemia, thus simplifying husbandry practices.


Assuntos
Reprodução , Peixe-Zebra , Ração Animal , Animais , Artemia , Dieta/veterinária , Fertilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa