Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(45): e2119044119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322725

RESUMO

Robust neural information transfer relies on a delicate molecular nano-architecture of chemical synapses. Neurotransmitter release is controlled by a specific arrangement of proteins within presynaptic active zones. How the specific presynaptic molecular architecture relates to postsynaptic organization and how synaptic nano-architecture is transsynaptically regulated to enable stable synaptic transmission remain enigmatic. Using time-gated stimulated emission-depletion microscopy at the Drosophila neuromuscular junction, we found that presynaptic nanorings formed by the active-zone scaffold Bruchpilot (Brp) align with postsynaptic glutamate receptor (GluR) rings. Individual rings harbor approximately four transsynaptically aligned Brp-GluR nanocolumns. Similar nanocolumn rings are formed by the presynaptic protein Unc13A and GluRs. Intriguingly, acute GluR impairment triggers transsynaptic nanocolumn formation on the minute timescale during homeostatic plasticity. We reveal distinct phases of structural transsynaptic homeostatic plasticity, with postsynaptic GluR reorganization preceding presynaptic Brp modulation. Finally, homeostatic control of transsynaptic nano-architecture and neurotransmitter release requires the auxiliary GluR subunit Neto. Thus, transsynaptic nanocolumn rings provide a substrate for rapid homeostatic stabilization of synaptic efficacy.


Assuntos
Proteínas de Drosophila , Junção Neuromuscular , Animais , Junção Neuromuscular/metabolismo , Drosophila/metabolismo , Transmissão Sináptica , Sinapses/metabolismo , Receptores de Glutamato/metabolismo , Proteínas de Drosophila/metabolismo , Neurotransmissores/metabolismo , Proteínas de Membrana/metabolismo
2.
Protein Expr Purif ; 59(2): 266-73, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18387819

RESUMO

Wolbachia pipientis are obligate endosymbionts that infect a wide range of insect and other arthropod species. They act as reproductive parasites by manipulating the host reproduction machinery to enhance their own transmission. This unusual phenotype is thought to be a consequence of the actions of secreted Wolbachia proteins that are likely to contain disulfide bonds to stabilize the protein structure. In bacteria, the introduction or isomerization of disulfide bonds in proteins is catalyzed by Dsb proteins. The Wolbachia genome encodes two proteins, alpha-DsbA1 and alpha-DsbA2, that might catalyze these steps. In this work we focussed on the 234 residue protein alpha-DsbA1; the gene was cloned and expressed in Escherichia coli, the protein was purified and its identity confirmed by mass spectrometry. The sequence identity of alpha-DsbA1 for both dithiol oxidants (E. coli DsbA, 12%) and disulfide isomerases (E. coli DsbC, 14%) is similar. We therefore sought to establish whether alpha-DsbA1 is an oxidant or an isomerase based on functional activity. The purified alpha-DsbA1 was active in an oxidoreductase assay but had little isomerase activity, indicating that alpha-DsbA1 is DsbA-like rather than DsbC-like. This work represents the first successful example of the characterization of a recombinant Wolbachia protein. Purified alpha-DsbA1 will now be used in further functional studies to identify protein substrates that could help explain the molecular basis for the unusual Wolbachia phenotypes, and in structural studies to explore its relationship to other disulfide oxidoreductase proteins.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/química , Wolbachia/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Dados de Sequência Molecular , Isomerases de Dissulfetos de Proteínas/isolamento & purificação , Alinhamento de Sequência , Wolbachia/genética
3.
Antioxid Redox Signal ; 11(7): 1485-500, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19265485

RESUMO

The alpha-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (alpha-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia alpha-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia alpha-DsbA1 possesses a second disulfide that is highly conserved in alpha-proteobacterial DsbAs but not in other DsbAs. The alpha-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of alpha-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies.


Assuntos
Oxirredutases/metabolismo , Wolbachia/enzimologia , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Oxirredução , Oxirredutases/química , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
4.
J Biol Chem ; 283(7): 4261-71, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18077463

RESUMO

In Gram-negative bacteria, the introduction of disulfide bonds into folding proteins occurs in the periplasm and is catalyzed by donation of an energetically unstable disulfide from DsbA, which is subsequently re-oxidized through interaction with DsbB. Gram-positive bacteria lack a classic periplasm but nonetheless encode Dsb-like proteins. Staphylococcus aureus encodes just one Dsb protein, a DsbA, and no DsbB. Here we report the crystal structure of S. aureus DsbA (SaDsbA), which incorporates a thioredoxin fold with an inserted helical domain, like its Escherichia coli counterpart EcDsbA, but it lacks the characteristic hydrophobic patch and has a truncated binding groove near the active site. These findings suggest that SaDsbA has a different substrate specificity than EcDsbA. Thermodynamic studies indicate that the oxidized and reduced forms of SaDsbA are energetically equivalent, in contrast to the energetically unstable disulfide form of EcDsbA. Further, the partial complementation of EcDsbA by SaDsbA is independent of EcDsbB and biochemical assays show that SaDsbA does not interact with EcDsbB. The identical stabilities of oxidized and reduced SaDsbA may facilitate direct re-oxidation of the protein by extracellular oxidants, without the need for DsbB.


Assuntos
Proteínas de Bactérias/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Estresse Oxidativo , Dobramento de Proteína , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalização , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 279(18): 18277-87, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-14871896

RESUMO

The thiol-disulfide oxidoreductase ERp57 is a soluble protein of the endoplasmic reticulum and the closest known homologue of protein disulfide isomerase. The protein interacts with the two lectin chaperones calnexin and calreticulin and thereby promotes the oxidative folding of newly synthesized glycoproteins. Here we have characterized several fundamental structural and functional properties of ERp57 in vitro, such as the domain organization, shape, redox potential, and the ability to catalyze different thiol-disulfide exchange reactions. Like protein disulfide isomerase, we find ERp57 to be comprised of four structural domains. The protein has an elongated shape of 3.4 +/- 0.1 nm in diameter and 16.8 +/- 0.5 nm in length. The two redox-active a and a' domains were determined to have redox potentials of -0.167 and -0.156 V, respectively. Furthermore, ERp57 was shown to efficiently catalyze disulfide reduction, disulfide isomerization, and dithiol oxidation in substrate proteins. The implications of these findings for the function of the protein in vivo are discussed.


Assuntos
Proteínas de Choque Térmico/química , Isomerases/química , Proteína Dissulfeto Redutase (Glutationa)/química , Catálise , Clonagem Molecular , Dissulfetos/metabolismo , Eletroquímica , Proteínas de Choque Térmico/metabolismo , Humanos , Isomerases/metabolismo , Oxirredução , Fragmentos de Peptídeos/química , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Isomerases de Dissulfetos de Proteínas , Análise de Sequência de Proteína
6.
EMBO J ; 23(8): 1709-19, 2004 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15057279

RESUMO

DsbD from Escherichia coli catalyzes the transport of electrons from cytoplasmic thioredoxin to the periplasmic disulfide isomerase DsbC. DsbD contains two periplasmically oriented domains at the N- and C-terminus (nDsbD and cDsbD) that are connected by a central transmembrane (TM) domain. Each domain contains a pair of cysteines that are essential for catalysis. Here, we show that Cys109 and Cys461 form a transient interdomain disulfide bond between nDsbD and cDsbD in the reaction cycle of DsbD. We solved the crystal structure of this catalytic intermediate at 2.85 A resolution, which revealed large relative domain movements in DsbD as a consequence of a strong overlap between the surface areas of nDsbD that interact with DsbC and cDsbD. In addition, we have measured the kinetics of all functional and nonfunctional disulfide exchange reactions between redox-active, periplasmic proteins and protein domains from the oxidative DsbA/B and the reductive DsbC/D pathway. We show that both pathways are separated by large kinetic barriers for nonfunctional disulfide exchange between components from different pathways.


Assuntos
Dissulfetos/química , Dissulfetos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Catálise , Cristalografia por Raios X , Cisteína/metabolismo , Transporte de Elétrons , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/isolamento & purificação , Modelos Moleculares , Peso Molecular , Oxirredução , Oxirredutases , Periplasma/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa