Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 13: 55, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24581152

RESUMO

BACKGROUND: A chronic increase in blood flow in resistance arteries is associated with increased lumen diameter (outward remodeling) and improved endothelium (NO)-mediated relaxation. Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases. Nevertheless, it is impaired in 12 to 24-month old rats and in young Zucker Diabetic Fatty (ZDF) rats due to advanced glycation end products (AGEs) and oxidative stress. As type 2 diabetes occurs preferentially in older subjects we investigated flow-mediated remodeling and the effect of the AGEs breaker ALT-711 associated or not to the antioxidant TEMPOL in one-year old lean (LZ) and ZDF rats. METHODS: Mesenteric resistance arteries were exposed to high (HF) or normal blood flow (NF) in vivo. They were collected after 2 weeks for in vitro analysis. RESULTS: In LZ rats, diameter expansion did not occur despite a significant increase in blood flow in HF arteries. Nevertheless, endothelium-mediated relaxation was higher in HF than in NF arteries. ALT-711, alone or in combination with TEMPOL, restored outward remodeling in HF arteries in association with AGEs reduction. TEMPOL alone had no effect. ALT-711, TEMPOL or the combination of the 2 drugs did not significantly affect endothelium-mediated relaxation in HF and NF arteries.In ZDF rats, diameter did not increase despite the increase in blood flow and endothelium-mediated relaxation was further decreased in HF arteries in association with AGEs accumulation and excessive oxidative stress. In both NF and HF arteries, endothelium-mediated relaxation was lower in ZDF than in LZ rats. ALT-711, TEMPOL or their combination did not improve remodeling (diameter equivalent in HF and NF arteries). In parallel, they did not reduce AGEs level and did not improve MMPs activity. Nevertheless, ALT-711 and TEMPOL partly improved endothelium-mediated relaxation through a reduction of oxidative stress and the association of ALT-711 and TEMPOL fully restored relaxation to the level found in LZ rats. CONCLUSIONS: ALT-711 did not improve outward remodeling in mature ZDF rats but it reduced oxidative stress and consequently improved endothelium-dependent relaxation. In mature LZ rats, ALT-711 improved outward remodeling and reduced AGEs level. Consequently, AGEs breaking is differently useful in ageing whether it is associated with diabetes or not.


Assuntos
Envelhecimento/metabolismo , Antioxidantes/farmacologia , Velocidade do Fluxo Sanguíneo/fisiologia , Produtos Finais de Glicação Avançada/metabolismo , Resistência Vascular/fisiologia , Vasodilatação/fisiologia , Envelhecimento/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Masculino , Ratos , Ratos Zucker , Resultado do Tratamento , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
2.
Diabetes ; 61(6): 1562-72, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22415880

RESUMO

Flow-mediated remodeling of resistance arteries is essential for revascularization in ischemic diseases, but this is impaired in diabetes. We hypothesized that breaking advanced glycation end product (AGE) cross-links could improve remodeling in mesenteric resistance arteries in Zucker diabetic fatty (ZDF) rats compared with lean Zucker (LZ) rats. Arteries, exposed to high (HF) or normal (NF) blood flow after alternate arterial ligation in vivo, were collected after 2 weeks. In LZ rats, HF artery diameter was larger than for NF vessels, but this was not the case in ZDF rats. Endothelium-mediated dilation in ZDF rats, which was lower than in LZ rats, was further decreased in HF arteries. Treatment of rats with the AGE-breaker 4,5-dimethyl-3-phenacylthiazolium chloride (ALT-711) (3 mg/kg/day; 3 weeks) reversed diabetes-induced impairment of HF-dependent remodeling. ALT-711 also improved endothelium nitric oxide-dependent relaxation in mesenteric resistance arteries. Reactive oxygen species reduction restored relaxation in ZDF rats but not in LZ or ALT-711-treated rats. AGEs were reduced in ALT-711-treated ZDF rats compared with ZDF rats. Metalloproteinase activity, necessary for HF-dependent remodeling, was reduced in ZDF rats compared with LZ rats and restored by ALT-711. Thus, targeting AGE cross-links may provide a therapeutic potential for overcoming microvascular complications in ischemic disorders occurring in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Artérias Mesentéricas/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Produtos Finais de Glicação Avançada/metabolismo , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Ratos , Ratos Zucker , Tiazóis/uso terapêutico , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
3.
Vascul Pharmacol ; 57(5-6): 173-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22484164

RESUMO

Shear stress due to blood flow is the most important force stimulating vascular endothelium. Acute stimulation of the endothelium by shear stress induces a vasodilatation mainly due to the release of nitric oxide (NO) among other relaxing agents. After a chronic increase in blood flow (shear stress), the endothelium triggers diameter enlargement, medial hypertrophy and improvement of arterial contractility and endothelium-mediated dilation. Shear stress-mediated outward remodeling requires an initial inflammatory response followed by the production of reactive oxygen species (ROS) and peroxinitrite anions, which activate MMPs and extracellular matrix digestion allowing diameter expansion. This outward remodeling occurs in collateral growth following occlusion of a large artery. In diabetes, an excessive ROS production is associated with the formation of advanced glycation end-products (AGEs) and the glycation of enzymes involved in vascular tone. The balance between inflammation, AGEs and ROS level determines the ability of resistance arteries to develop outward remodeling whereas AGEs and ROS contribute to decrease endothelium-mediated dilation in remodeled vessels. This review explores the interaction between ROS, AGEs and the endothelium in shear stress-mediated outward remodeling of resistance arteries in diabetes. Restoring or maintaining this remodeling is essential for an efficient blood flow in distal organs.


Assuntos
Diabetes Mellitus/fisiopatologia , Estresse Oxidativo , Resistência Vascular/fisiologia , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Resistência ao Cisalhamento/fisiologia , Vasodilatação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa