Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Biol Sci ; 290(1992): 20221784, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750190

RESUMO

Social insect queens and workers can engage in conflict over reproductive allocation when they have different fitness optima. Here, we show that queens have control over queen-worker caste allocation in the ant Cardiocondyla obscurior, a species in which workers lack reproductive organs. We describe crystalline deposits that distinguish castes from the egg stage onwards, providing the first report of a discrete trait that can be used to identify ant caste throughout pre-imaginal development. The comparison of queen and worker-destined eggs and larvae revealed size and weight differences in late development, but no discernible differences in traits that may be used in social interactions, including hair morphology and cuticular odours. In line with a lack of caste-specific traits, adult workers treated developing queens and workers indiscriminately. Together with previous studies demonstrating queen control over sex allocation, these results show that queens control reproductive allocation in C. obscurior and suggest that the fitness interests of colony members are aligned to optimize resource allocation in this ant.


Assuntos
Formigas , Animais , Larva , Fenótipo , Reprodução
2.
Biol Lett ; 19(11): 20230415, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964577

RESUMO

The modulation of nutritional intake by animals to combat pathogens is a behaviour that is receiving increasing attention. Ant studies using isolated compounds or nutrients in artificial diets have revealed a lot of the dynamics of the behaviour, but natural sources of medicine are yet to be confirmed. Here we explored whether Formica fusca ants exposed to a fungal pathogen can use an artificial diet containing foods spiked with different concentrations of crushed aphids for a medicinal benefit. We show that pathogen exposed colonies adjusted their diet to include more aphid supplemented foods during the acute phase of the infection, reducing the mortality caused by the disease. However, the benefit was only attained when having access to a varied diet, suggesting that while aphids contain nutrients or compounds beneficial against infection, it is a part of a complex nutritional system where costs and benefits of compounds and nutrients need to be moderated.


Assuntos
Formigas , Afídeos , Micoses , Animais , Alimentos Fortificados
3.
J Exp Biol ; 224(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424968

RESUMO

Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens, and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs, where they are recognized by the embryo's immune system and induce higher pathogen resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses' jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels of an antimicrobial peptide found in royal jelly, defensin-1.


Assuntos
Ácidos Graxos , Vitelogeninas , Animais , Bactérias , Abelhas , Larva
4.
J Exp Biol ; 224(Pt 7)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33653721

RESUMO

Social immunity is a suite of behavioral and physiological traits that allow colony members to protect one another from pathogens, and includes the oral transfer of immunological compounds between nestmates. In honey bees, royal jelly is a glandular secretion produced by a subset of workers that is fed to the queen and young larvae, and which contains many antimicrobial compounds. A related form of social immunity, transgenerational immune priming (TGIP), allows queens to transfer pathogen fragments into their developing eggs, where they are recognized by the embryo's immune system and induce higher pathogen resistance in the new offspring. These pathogen fragments are transported by vitellogenin (Vg), an egg-yolk precursor protein that is also used by nurses to synthesize royal jelly. Therefore, royal jelly may serve as a vehicle to transport pathogen fragments from workers to other nestmates. To investigate this, we recently showed that ingested bacteria are transported to nurses' jelly-producing glands, and here, we show that pathogen fragments are incorporated into the royal jelly. Moreover, we show that consuming pathogen cells induces higher levels of an antimicrobial peptide found in royal jelly, defensin-1.


Assuntos
Ácidos Graxos , Vitelogeninas , Animais , Bactérias , Abelhas , Larva
5.
J Evol Biol ; 32(7): 653-665, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30903723

RESUMO

Seasonal polyphenism constitutes a specific type of phenotypic plasticity in which short-lived organisms produce different phenotypes in different times of the year. Seasonal generations of such species frequently differ in their overall lifespan and in the values of traits closely related to fitness. Seasonal polyphenisms provide thus excellent, albeit underused model systems for studying trade-offs between life-history traits. Here, we compare immunological parameters between the two generations of the European map butterfly (Araschnia levana), a well-known example of a seasonally polyphenic species. To reveal possible costs of immune defence, we also examine the concurrent differences in several life-history traits. Both in laboratory experiments and in the field, last instar larvae heading towards the diapause (overwintering) had higher levels of both phenoloxidase (PO) activity and lytic activity than directly developing individuals. These results suggest that individuals from the diapausing generation with much longer juvenile (pupal) period invest more in their immune system than those from the short-living directly developing generation. The revealed negative correlation between pupal mass and PO activity may be one of the reasons why, in this species, the diapausing generation has a smaller body size than the directly developing generation. Immunological parameters may thus well mediate trade-offs between body size-related traits.


Assuntos
Borboletas/imunologia , Borboletas/fisiologia , Longevidade/imunologia , Longevidade/fisiologia , Estações do Ano , Adaptação Fisiológica , Animais , Larva/imunologia , Larva/fisiologia , Características de História de Vida , Pupa/imunologia , Pupa/fisiologia , Seleção Genética
6.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068673

RESUMO

The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooperative defence (high attack intensity) incurred a clear cost by decreasing individual survival and potency of chemical defence. Cooperative behaviour and the magnitude of its costs were further shaped by host plant quality. The number of individuals participating in group defence, immune responses and female growth decreased on a high resin diet under high attack intensity. We also found some benefits of cheating: non-defending males had higher growth rates across treatments. Taken together, these results suggest that ecological interactions can shape the adaptive value of cooperative behaviour and maintain variation in the frequency of cooperation and cheating.


Assuntos
Comportamento Animal/fisiologia , Comportamento Cooperativo , Dieta , Himenópteros/fisiologia , Animais , Feminino , Himenópteros/crescimento & desenvolvimento , Imunidade Inata , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Pinus sylvestris , Comportamento Predatório , Resinas Vegetais/química , Comportamento Social
7.
PLoS Pathog ; 11(7): e1005015, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26230630

RESUMO

Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.


Assuntos
Abelhas/imunologia , Proteínas do Ovo/imunologia , Óvulo/imunologia , Vitelogeninas/imunologia , Animais , Western Blotting , Feminino , Ressonância de Plasmônio de Superfície
8.
J Exp Biol ; 220(Pt 14): 2606-2615, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28495866

RESUMO

Among-population differences in immunological traits allow assessment of both evolutionary and plastic changes in organisms' resistance to pathogens. Such knowledge also provides information necessary to predict responses of such traits to environmental changes. Studies on latitudinal trends in insect immunity have so far yielded contradictory results, suggesting that multispecies approaches with highly standardised experimental conditions are needed. Here, we studied among-population differences of two parameters reflecting constitutive immunity-phenoloxidase (PO) and lytic activity, using common-garden design on three distantly related moth species represented by populations ranging from northern Finland to Georgia (Caucasus). The larvae were reared at different temperatures and on different host plants under a crossed factors experimental design. Haemolymph samples for measurement of immune status were taken from the larvae strictly synchronously. Clear among-population differences could be shown only for PO activity in one species (elevated activity in the northern populations). There was some indication that the cases of total absence of lytic activity were more common in southern populations. The effects of temperature, host and sex on the immunological traits studied remained highly species specific. Some evidence was found that lytic activity may be involved in mediating trade-offs between immunity and larval growth performance. In contrast, PO activity rarely covaried with fitness-related traits, and neither were the values of PO and lytic activity correlated with each other. The relatively inconsistent nature of the detected patterns suggests that studies on geographic differences in immunological traits should involve multiple species, and rely on several immunological indices if general trends are a point of interest.


Assuntos
Geografia , Mariposas/imunologia , Adaptação Biológica , Animais , Dieta , Ecossistema , Meio Ambiente , Hemolinfa/imunologia , Imunidade Inata , Larva/enzimologia , Larva/imunologia , Micrococcus luteus/fisiologia , Monofenol Mono-Oxigenase/análise , Mariposas/enzimologia , Temperatura
9.
J Invertebr Pathol ; 144: 88-96, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28163013

RESUMO

The insect immune system has versatile ways of coping with microbial insults. Currently, innate immune priming has been described in several invertebrates, and the first insights into its mechanistic basis have been described. Here we studied infections with two different strains of Serratia marcescens bacteria in two different Lepidopteran hosts. The results reveal fundamental differences between the two hosts, a well-known model organism Galleria mellonella and a non-model species Arctia plantaginis. They differ in their strategies for resisting oral infections; priming their defences against a recurring sepsis; and upregulating immunity related genes as a response to the specific pathogen strains. The two bacterial strains (an environmental isolate and an entomopathogenic isolate) differ in their virulence, use of extracellular proteases, survival in the larval gut, and in the immune response they evoke in the hosts. This study explores the potential mechanistic explanations for both host and pathogen specific characters that significantly affect the outcome of Gram-negative bacterial infection in Lepidopteran larvae. The results highlight the need to pay greater attention to the differences between model and non-model hosts, and closely related pathogen strains, in immunological studies.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Lepidópteros/imunologia , Lepidópteros/microbiologia , Animais , Interações Hospedeiro-Patógeno/fisiologia , Especificidade da Espécie
10.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27271967

RESUMO

Hundreds of insect species are nowadays reared under laboratory conditions. Rearing of insects always implicates the risk of diseases, among which microbial infections are the most frequent and difficult problems. Although there are effective prophylactic treatments, the side effects of applied antibiotics are not well understood. We examined the effect of prophylactic antibiotic treatment on the overwintering success of wood tiger moth (Parasemia plantaginis) larvae, and the postdiapause effect on their life-history traits. Four weeks before hibernation larvae were treated with a widely used antibiotic (fumagillin). We monitored moths' survival and life-history traits during the following 10 mo, and compared them to those of untreated control larvae. Prophylactic antibiotic treatment had no effect on survival but we show effects on some life-history traits by decreasing the developmental time of treated larvae. However, we also revealed relevant negative effects, as antibiotic treated individuals show a decreased number of laid eggs and also furthermore a suppressed immunocompetence. These results implicate, that a prophylactic medication can also lead to negative effects on life-history traits and reproductive success, which should be seriously taken in consideration when applying a prophylactic treatment to laboratory reared insect populations.


Assuntos
Antibacterianos/farmacologia , Mariposas/efeitos dos fármacos , Animais , Animais de Laboratório , Antibioticoprofilaxia , Feminino , Imunocompetência/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Longevidade/efeitos dos fármacos , Masculino , Mariposas/crescimento & desenvolvimento , Pupa/efeitos dos fármacos , Pupa/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Análise de Sobrevida
11.
Front Zool ; 11(1): 23, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24602309

RESUMO

BACKGROUND: Previous exposure to a pathogen can help organisms cope with recurring infection. This is widely recognised in vertebrates, but increasing occasions are also being reported in invertebrates where this phenomenon is referred to as immune priming. However, the mechanisms that allow acquired pathogen resistance in insects remain largely unknown. RESULTS: We studied the priming of bacterial resistance in the larvae of the tiger moth, Parasemia plantaginis using two gram-negative bacteria, a pathogenic Serratia marcescens and a non-pathogenic control, Escherichia coli. A sublethal oral dose of S. marcescens provided the larvae with effective protection against an otherwise lethal septic infection with the same pathogen five days later. At the same time, we assessed three anti-bacterial defence mechanisms from the larvae that had been primarily exposed to the bacteria via contaminated host plant. Results showed that S. marcescens had induced a higher amount of reactive oxygen species (ROS) in the larval haemolymph, possibly protecting the host from the recurring infection. CONCLUSIONS: Our study supports the growing evidence of immune priming in insects. It shows that activation of the protective mechanism requires a specific induction, rather than a sheer exposure to any gram-negative bacteria. The findings indicate that systemic pathogen recognition happens via the gut, and suggest that persistent loitering of immune elicitors or anti-microbial molecules are a possible mechanism for the observed prophylaxis. The self-harming effects of ROS molecules are well known, which indicates a potential cost of increased resistance. Together these findings could have important implications on the ecological and epidemiological processes affecting insect and pathogen populations.

12.
Trends Parasitol ; 40(4): 338-349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443305

RESUMO

Like humans, animals use plants and other materials as medication against parasites. Recent decades have shown that the study of insects can greatly advance our understanding of medication behaviors. The ease of rearing insects under laboratory conditions has enabled controlled experiments to test critical hypotheses, while their spectrum of reproductive strategies and living arrangements - ranging from solitary to eusocial communities - has revealed that medication behaviors can evolve to maximize inclusive fitness through both direct and indirect fitness benefits. Studying insects has also demonstrated in some cases that medication can act through modulation of the host's innate immune system and microbiome. We highlight outstanding questions, focusing on costs and benefits in the context of inclusive host fitness.


Assuntos
Insetos , Parasitos , Animais , Humanos , Reprodução , Interações Hospedeiro-Parasita
13.
Front Vet Sci ; 10: 1129701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923051

RESUMO

Honeybees are major pollinators for our food crops, but at the same time they face many stressors all over the world. One of the major threats to honeybee health are bacterial diseases, the most severe of which is the American Foulbrood (AFB). Recently a trans-generational vaccination approach against AFB has been proposed, showing strong potential in protecting the colonies from AFB outbreaks. Yet, what remains unstudied is whether the priming of the colony has any undesired side-effects. It is widely accepted that immune function is often a trade-off against other life-history traits, hence immune priming could have an effect on the colony performance. In this experiment we set up 48 hives, half of them with primed queens and half of them as controls. The hives were placed in six apiaries, located as pair of apiaries in three regions. Through a 2-year study we monitored the hives and measured their health and performance. We measured hive weight and frame contents such as brood amount, worker numbers, and honey yield. We studied the prevalence of the most common honeybee pathogens in the hives and expression of relevant immune genes in the offspring at larval stage. No effect of trans-generational immune priming on any of the hive parameters was found. Instead, we did find other factors contributing on various hive performance parameters. Interestingly not only time but also the region, although only 10 km apart from each other, had an effect on the performance and health of the colonies, suggesting that the local environment plays an important role in hive performance. Our results suggest that exploiting the trans-generational priming could serve as a safe tool in fighting the AFB in apiaries.

14.
Sci Rep ; 13(1): 14753, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679501

RESUMO

Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.


Assuntos
Mel , Magnoliopsida , Abelhas , Animais , Néctar de Plantas , Código de Barras de DNA Taxonômico , Pólen , DNA
15.
Biol Lett ; 8(5): 860-3, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22628099

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs mediating post-transcriptional regulation of gene expression in eukaryotes. Addressing their role in regulation of physiological adaptations to environmental stress in insects, we selected the red flour beetle Tribolium castaneum as a model. Beetles were fed with the bacterial entomopathogen Pseudomonas entomophila (to mimic natural infection), injected with peptidoglycan (experimental setting of strong immune responses) or subjected to either mild heat shock or starvation. Differential expression of selected immunity- and stress-related genes was quantified using real-time PCR, and expression and induction of 455 mature arthropod miRNAs were determined using proprietary microarrays. We found that Tribolium exhibits both gender- and stressor-specific adjustment of immune gene and miRNA expression. Strikingly, we discovered that the number of stressor-induced miRNAs in females is remarkably higher than in males. This observation could support the hypothesis called Bateman's principle in immunity that predicts gender-specific immune responses because females gain fitness through increased longevity, whereas males gain fitness by increasing mating rates. Our results suggest that Tribolium males and females display differential regulatory elements, both pre- and post-transcriptional, likely resulting from different investment strategies in life-history traits.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Estresse Fisiológico , Tribolium/genética , Tribolium/fisiologia , Animais , Meio Ambiente , Feminino , Privação de Alimentos , Humanos , Sistema Imunitário/fisiologia , Masculino , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Fatores Sexuais , Comportamento Sexual Animal , Tribolium/imunologia
16.
Proc Natl Acad Sci U S A ; 106(38): 16304-9, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19805297

RESUMO

Oxylipins play important roles in stress signaling in plants. The compound 12-oxophytodienoic acid (cis-OPDA) is an early biosynthetic precursor of jasmonic acid (JA), the key phytohormone orchestrating the plant anti-herbivore defense. When consumed by feeding Lepidopteran larvae, plant-derived cis-OPDA suffers rapid isomerization to iso-OPDA in the midgut and is excreted in the frass. Unlike OPDA epimerization (yielding trans-OPDA), the formation of iso-OPDA is enzyme-dependent, and is catalyzed by an inducible glutathione transferase (GSTs) from the larval gut. Purified GST fractions from the gut of Egyptian cotton leafworm (Spodoptera littoralis) and cotton bollworm (Helicoverpa armigera) both exhibited strong OPDA isomerization activity, most likely via transient formation of a glutathione-OPDA conjugate. Out of 16 cytosolic GST proteins cloned from the gut of cotton bollworm larvae and expressed in E. coli, only one catalyzed the OPDA isomerization. The biological function of the double bond shift might be seen in an inactivation of cis-OPDA, similar to the inactivation of prostaglandin A1 to prostaglandin B1 in mammalian tissue. The enzymatic isomerization is particularly widespread among generalist herbivores that have to cope with various amounts of cis-OPDA in their spectrum of host plants.


Assuntos
Sistema Digestório/enzimologia , Ácidos Graxos Insaturados/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Insetos/metabolismo , Insetos/enzimologia , Animais , Eletroforese em Gel Bidimensional , Ácidos Graxos Insaturados/química , Cromatografia Gasosa-Espectrometria de Massas , Glutationa Transferase/isolamento & purificação , Proteínas de Insetos/isolamento & purificação , Insetos/classificação , Modelos Químicos , Estrutura Molecular , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Especificidade da Espécie , Estereoisomerismo
17.
Front Insect Sci ; 2: 870971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468809

RESUMO

Ants face unique challenges regarding pathogens, as the sociality which has allowed them to form large and complex colonies also raises the potential for transmission of disease within them. To cope with the threat of pathogens, ants have developed a variety of behavioral and physiological strategies. One of these strategies is self-medication, in which animals use biologically active compounds to combat pathogens in a way which would be harmful in the absence of infection. Formica fusca are the only ants that have previously been shown to successfully self-medicate against an active infection caused by a fungal pathogen by supplementing their diet with food containing hydrogen peroxide. Here, we build on that research by investigating how the prevalence of disease in colonies of F. fusca affects the strength of the self-medication response. We exposed either half of the workers of each colony or all of them to a fungal pathogen and offered them different combinations of diets. We see that workers of F. fusca engage in self-medication behavior even if exposed to a low lethal dose of a pathogen, and that the strength of that response is affected by the prevalence of the disease in the colonies. We also saw that the infection status of the individual foragers did not significantly affect their decision to forage on either control food or medicinal food as uninfected workers were also foraging on hydrogen peroxide food, which opens up the possibility of kin medication in partially infected colonies. Our results further affirm the ability of ants to self-medicate against fungal pathogens, shed new light on plasticity of self-medication and raise new questions to be investigated on the role self-medication has in social immunity.

18.
Front Vet Sci ; 9: 946237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325099

RESUMO

Pollination services to increase crop production are becoming more and more important, as we are facing both climate change and a growing world population. Both are predicted to impact food security worldwide. High-density, commercial beekeeping has become a key link in the food supply chain, and diseases have become a central issue in hive losses around the world. American Foulbrood (AFB) disease is a highly contagious bacterial brood disease in honey bees (Apis mellifera), leading to hive losses worldwide. The causative agent is the Gram+ bacterium Paenibacillus larvae, which is able to infect honey bee larvae during the first 3 days of their lives. It can be found in hives around the world with viable spores for decades. Antibiotics are largely ineffective in treating the disease as they are only efficient against the vegetative state. Once a hive shows the clinical manifestation of the disease, the only effective way to eradicate it and prevent the spread of the disease is by burning the hive, the equipment, and the colony. Because of its virulent nature and detrimental effects on honey bee colonies, AFB is classified as a notifiable disease worldwide. Effective, safe, and sustainable methods are needed to ensure the wellbeing of honey bee colonies. Even though insects lack antibodies, which are the main requisites for trans-generational immune priming (TGIP), they can prime their offspring against persisting pathogens. Here, we demonstrate an increased survival of infected honey bee larvae after their queen was vaccinated, compared to offspring of control queens (placebo vaccinated). These results indicate that TGIP in insects can be used to majorly enhance colony health, protect commercial pollinators from deadly diseases, and reduce high financial and material losses to beekeepers. Classification: biological sciences, applied biological sciences.

19.
BMC Genomics ; 10: 506, 2009 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-19878603

RESUMO

BACKGROUND: The mechanisms that shape the host plant range of herbivorous insect are to date not well understood but knowledge of these mechanisms and the selective forces that influence them can expand our understanding of the larger ecological interaction. Nevertheless, it is well established that chemical defenses of plants influence the host range of herbivorous insects. While host plant chemistry is influenced by phylogeny, also the growth forms of plants appear to influence the plant defense strategies as first postulated by Feeny (the "plant apparency" hypothesis). In the present study we aim to investigate the molecular basis of the diverse host plant range of the comma butterfly (Polygonia c-album) by testing differential gene expression in the caterpillars on three host plants that are either closely related or share the same growth form. RESULTS: In total 120 genes were identified to be differentially expressed in P. c-album after feeding on different host plants, 55 of them in the midgut and 65 in the restbody of the caterpillars. Expression patterns could be confirmed with an independent method for 14 of 27 tested genes. Pairwise similarities in upregulation in the midgut of the caterpillars were higher between plants that shared either growth form or were phylogenetically related. No known detoxifying enzymes were found to be differently regulated in the midgut after feeding on different host plants. CONCLUSION: Our data suggest a complex picture of gene expression in response to host plant feeding. While each plant requires a unique gene regulation in the caterpillar, both phylogenetic relatedness and host plant growth form appear to influence the expression profile of the polyphagous comma butterfly, in agreement with phylogenetic studies of host plant utilization in butterflies.


Assuntos
Borboletas/genética , Regulação da Expressão Gênica , Filogenia , Desenvolvimento Vegetal , Plantas/classificação , Animais , Borboletas/fisiologia , Feminino , Perfilação da Expressão Gênica , Genes de Insetos , Masculino
20.
Proc Biol Sci ; 276(1667): 2617-24, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19369263

RESUMO

Trans-generational effects on immunity are well known in vertebrates and are considered in many evolutionary and ecological theories of species interaction. Maternal effects have been identified to be of special importance, and are now recognized as a mechanism for adaptive phenotypic response to environmental heterogeneity. We have previously shown that exposure to dietary non-pathogenic bacteria can induce several aspects of immune response in an insect herbivore, the cabbage semilooper (Trichoplusia ni). Here, we test the effects of this exposure on the immune status of the next generation, measuring immune parameters on three different levels-enzyme activities, protein expression and transcript abundance. We also monitored fitness-related traits which are often negatively correlated with increased immunocompetence. We found evidence for trans-generational priming on all these levels, with immune system parameters that are clearly not transmitted in a 1 : 1 ratio from parent to offspring, but rather in a complex manner with a strong but not exclusive maternal component. These findings indicate that trans-generational priming is a complex and multifaceted phenomenon, potentially playing a role as a long-term but non-genetic mode of environmental adaptation.


Assuntos
Dieta , Imunidade Materno-Adquirida/fisiologia , Mariposas/imunologia , Animais , Feminino , Larva/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa