Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279253

RESUMO

In the setting of pronounced inflammation, changes in the epithelium may overlap with neoplasia, often rendering it impossible to establish a diagnosis with certainty in daily clinical practice. Here, we discuss the underlying molecular mechanisms driving tissue response during persistent inflammatory signaling along with the potential association with cancer in the gastrointestinal tract, pancreas, extrahepatic bile ducts, and liver. We highlight the histopathological challenges encountered in the diagnosis of chronic inflammation in routine practice and pinpoint tissue-based biomarkers that could complement morphology to differentiate reactive from dysplastic or cancerous lesions. We refer to the advantages and limitations of existing biomarkers employing immunohistochemistry and point to promising new markers, including the generation of novel antibodies targeting mutant proteins, miRNAs, and array assays. Advancements in experimental models, including mouse and 3D models, have improved our understanding of tissue response. The integration of digital pathology along with artificial intelligence may also complement routine visual inspections. Navigating through tissue responses in various chronic inflammatory contexts will help us develop novel and reliable biomarkers that will improve diagnostic decisions and ultimately patient treatment.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Animais , Camundongos , Neoplasias/diagnóstico , Inflamação , Biomarcadores , Hiperplasia , Sistema Digestório
2.
J Transl Med ; 21(1): 169, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869333

RESUMO

BACKGROUND: Chemotherapy (CT) is central to the treatment of triple negative breast cancer (TNBC), but drug toxicity and resistance place strong restrictions on treatment regimes. Fasting sensitizes cancer cells to a range of chemotherapeutic agents and also ameliorates CT-associated adverse effects. However, the molecular mechanism(s) by which fasting, or short-term starvation (STS), improves the efficacy of CT is poorly characterized. METHODS: The differential responses of breast cancer or near normal cell lines to combined STS and CT were assessed by cellular viability and integrity assays (Hoechst and PI staining, MTT or H2DCFDA staining, immunofluorescence), metabolic profiling (Seahorse analysis, metabolomics), gene expression (quantitative real-time PCR) and iRNA-mediated silencing. The clinical significance of the in vitro data was evaluated by bioinformatical integration of transcriptomic data from patient data bases: The Cancer Genome Atlas (TCGA), European Genome-phenome Archive (EGA), Gene Expression Omnibus (GEO) and a TNBC cohort. We further examined the translatability of our findings in vivo by establishing a murine syngeneic orthotopic mammary tumor-bearing model. RESULTS: We provide mechanistic insights into how preconditioning with STS enhances the susceptibility of breast cancer cells to CT. We showed that combined STS and CT enhanced cell death and increased reactive oxygen species (ROS) levels, in association with higher levels of DNA damage and decreased mRNA levels for the NRF2 targets genes NQO1 and TXNRD1 in TNBC cells compared to near normal cells. ROS enhancement was associated with compromised mitochondrial respiration and changes in the metabolic profile, which have a significant clinical prognostic and predictive value. Furthermore, we validate the safety and efficacy of combined periodic hypocaloric diet and CT in a TNBC mouse model. CONCLUSIONS: Our in vitro, in vivo and clinical findings provide a robust rationale for clinical trials on the therapeutic benefit of short-term caloric restriction as an adjuvant to CT in triple breast cancer treatment.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Dieta Redutora , Espécies Reativas de Oxigênio , Obesidade
3.
PLoS Pathog ; 17(9): e1009954, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543352

RESUMO

Topoisomerases are essential for the replication of herpesviruses but the mechanisms by which the viruses hijack the cellular enzymes are largely unknown. We found that topoisomerase-II (TOP2) is a substrate of the Epstein-Barr virus (EBV) ubiquitin deconjugase BPLF1. BPLF1 co-immunoprecipitated and deubiquitinated TOP2, and stabilized SUMOylated TOP2 trapped in cleavage complexes (TOP2ccs), which halted the DNA damage response to TOP2-induced double strand DNA breaks and promoted cell survival. Induction of the productive virus cycle in epithelial and lymphoid cell lines carrying recombinant EBV encoding the active enzyme was accompanied by TOP2 deubiquitination, accumulation of TOP2ccs and resistance to Etoposide toxicity. The protective effect of BPLF1 was dependent on the expression of tyrosyl-DNA phosphodiesterase 2 (TDP2) that releases DNA-trapped TOP2 and promotes error-free DNA repair. These findings highlight a previously unrecognized function of BPLF1 in supporting a non-proteolytic pathway for TOP2ccs debulking that favors cell survival and virus production.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Células HEK293 , Células HeLa , Humanos
4.
Microb Pathog ; 185: 106442, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944675

RESUMO

Alphaproteobacteria include organisms living in close association with plants or animals. This interaction relies partly on orthologous two-component regulatory systems (TCS), with sensor and regulator proteins modulating the expression of conserved genes related to symbiosis/virulence. We assessed the ability of the exoS+Sm gene, encoding a sensor protein from the plant endosymbiont Sinorhizobium meliloti to substitute its orthologous bvrS in the related animal/human pathogen Brucella abortus. ExoS phosphorylated the B. abortus regulator BvrR in vitro and in cultured bacteria, showing conserved biological function. Production of ExoS in a B. abortus bvrS mutant reestablished replication in host cells and the capacity to infect mice. Bacterial outer membrane properties, the production of the type IV secretion system VirB, and its transcriptional regulators VjbR and BvrR were restored as compared to parental B. abortus. These results indicate that conserved traits of orthologous TCS from bacteria living in and sensing different environments are sufficient to achieve phenotypic plasticity and support bacterial survival. The knowledge of bacterial genetic networks regulating host interactions allows for an understanding of the subtle differences between symbiosis and parasitism. Rewiring these networks could provide new alternatives to control and prevent bacterial infection.


Assuntos
Brucella abortus , Genes Bacterianos , Animais , Camundongos , Humanos , Virulência/genética , Histidina Quinase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mamíferos/genética , Mamíferos/metabolismo
5.
Cell Microbiol ; 23(2): e13279, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040471

RESUMO

Infections in humans occur in the context of complex niches where the pathogen interacts with both the host microenvironment and immune response, and the symbiotic microbial community. The polymicrobial nature of many human infections adds a further layer of complexity. The effect of co- or polymicrobial infections can result in enhanced severity due to pathogens cooperative interaction or reduced morbidity because one of the pathogens affects the fitness of the other(s). In this review, the concept of co-infections and polymicrobial interactions in the context of the intestinal mucosa is discussed, focusing on the interplay between the host, the microbiota and the pathogenic organisms. Specifically, we will examine examples of pathogen-cooperative versus -antagonistic behaviour during co- and polymicrobial infections. We discuss: the infection-induced modulation of the host microenvironment and immune responses; the direct modulation of the microorganism's fitness; the potentiation of inflammatory/carcinogenic conditions by polymicrobial biofilms; and the promotion of co-infections by microbial-induced DNA damage. Open questions in this very exciting field are also highlighted.


Assuntos
Coinfecção , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Imunidade , Mucosa Intestinal/imunologia , Interações Microbianas , Animais , Biofilmes , Disbiose , Humanos , Simbiose
6.
Cell Microbiol ; 23(11): e13380, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34292647

RESUMO

Many Gram-negative pathogens produce a cytolethal distending toxin (CDT) with two cell-binding subunits (CdtA + CdtC) and a catalytic CdtB subunit. After adhesion to the plasma membrane of a target cell, CDT moves by retrograde transport to endoplasmic reticulum. CdtB then enters the nucleus where it generates DNA breaks that lead to cell cycle arrest and apoptosis or senescence. CdtA anchors the CDT holotoxin to the plasma membrane and is thought to remain on the cell surface after endocytosis of the CdtB/CdtC heterodimer. Here, we re-examined the potential endocytosis and intracellular transport of CdtA from the Haemophilus ducreyi CDT. We recorded the endocytosis of holotoxin-associated CdtA with a cell-based enzyme-linked immunoabsorbent assay (CELISA) and visualised its presence in the early endosomes by confocal microscopy 10 min after CDT binding to the cell surface. Western blot analysis documented the rapid degradation of internalised CdtA. Most of internalised CdtB and CdtC were degraded as well. The rapid rate of CDT internalisation and turnover, which could explain why CdtA endocytosis was not detected in previous studies, suggests only a minor pool of cell-associated CdtB reaches the nucleus. Our work demonstrates that CDT is internalised as an intact holotoxin and identifies the endosomes as the site of CdtA dissociation from CdtB/CdtC. TAKE AWAYS: During the endocytosis of CDT, CdtA is thought to remain at the cell surface. A cell-based ELISA documented the rapid endocytosis of CdtA. CdtA was visualised in the early endosomes by confocal microscopy. Intracellular CdtA was rapidly degraded, along with most of CdtB and CdtC.


Assuntos
Toxinas Bacterianas , Haemophilus ducreyi , Membrana Celular , Endocitose
7.
Cell Microbiol ; 21(12): e13099, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31414579

RESUMO

Several commensal and pathogenic Gram-negative bacteria produce DNA-damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin-producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin-producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC-deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3-kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin-producing bacteria in promoting a microenvironment conducive to malignant transformation.


Assuntos
Polipose Adenomatosa do Colo/genética , Colo/metabolismo , Células Epiteliais/metabolismo , Instabilidade Genômica/genética , Fosfatidilinositol 3-Quinases/metabolismo , Infecções por Salmonella/metabolismo , Salmonella enterica/metabolismo , Polipose Adenomatosa do Colo/microbiologia , Polipose Adenomatosa do Colo/patologia , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Colo/microbiologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Dano ao DNA/genética , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Genes Supressores de Tumor/fisiologia , Humanos , Camundongos , Mutagênicos/metabolismo , Infecções por Salmonella/genética , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética
8.
Int J Cancer ; 144(1): 98-109, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978480

RESUMO

We have addressed the role of bacterial co-infection in viral oncogenesis using as model Epstein-Barr virus (EBV), a human herpesvirus that causes lymphoid malignancies and epithelial cancers. Infection of EBV carrying epithelial cells with the common oral pathogenic Gram-negative bacterium Aggregatibacter actinomycetemcomitans (Aa) triggered reactivation of the productive virus cycle. Using isogenic Aa strains that differ in the production of the cytolethal distending toxin (CDT) and purified catalytically active or inactive toxin, we found that the CDT acts via induction of DNA double strand breaks and activation of the Ataxia Telangectasia Mutated (ATM) kinase. Exposure of EBV-negative epithelial cells to the virus in the presence of sub-lethal doses of CDT was accompanied by the accumulation of latently infected cells exhibiting multiple signs of genomic instability. These findings illustrate a scenario where co-infection with certain bacterial species may favor the establishment of a microenvironment conducive to the EBV-induced malignant transformation of epithelial cells.


Assuntos
Aggregatibacter actinomycetemcomitans/fisiologia , Transformação Celular Neoplásica , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Herpesvirus Humano 4/fisiologia , Ativação Viral/fisiologia , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Humanos , Interações Microbianas/fisiologia , Mutagênicos/farmacologia
9.
PLoS Pathog ; 12(4): e1005528, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27055274

RESUMO

Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria.


Assuntos
Infecções Assintomáticas , Doenças Transmissíveis/microbiologia , Mutagênicos/toxicidade , Salmonella typhimurium/patogenicidade , Febre Tifoide/microbiologia , Animais , Intestinos/microbiologia , Macrófagos/microbiologia , Camundongos , Virulência
10.
Biochim Biophys Acta ; 1858(3): 567-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26299818

RESUMO

Bacterial protein genotoxins target the DNA of eukaryotic cells, causing DNA single and double strand breaks. The final outcome of the intoxication is induction of DNA damage responses and activation of DNA repair pathways. When the damage is beyond repair, the target cell either undergoes apoptosis or enters a permanent quiescent stage, known as cellular senescence. In certain instances, intoxicated cells can survive and proliferate. This event leads to accumulation of genomic instability and acquisition of malignant traits, underlining the carcinogenic potential of these toxins. The toxicity is dependent on the toxins' internalization and trafficking from the extracellular environment to the nucleus, and requires a complex interaction with several cellular membrane compartments: the plasma membrane, the endosomes, the trans Golgi network and the endoplasmic reticulum, and finally the nucleus. This review will discuss the current knowledge of the bacterial genotoxins internalization pathways and will highlight the issues that still remain unanswered. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Dano ao DNA , Mutagênicos/metabolismo , Animais , Bactérias/patogenicidade , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Senescência Celular , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Transporte Proteico
11.
Cell Microbiol ; 15(12): 2034-50, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23869968

RESUMO

Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram-negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella-containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71-CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71-CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71-CDT also secreted OMVs-like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin-loaded OMVs by bystander cells was dependent on dynamin-1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria.


Assuntos
Toxinas Bacterianas/metabolismo , Salmonella typhi/metabolismo , Salmonella typhimurium/metabolismo , Vesículas Secretórias/metabolismo , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Brefeldina A/farmacologia , Células CACO-2 , Linhagem Celular , Dano ao DNA , Dinamina I/antagonistas & inibidores , Dinamina I/metabolismo , Dinaminas/antagonistas & inibidores , Endocitose , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Células HeLa , Humanos , Hidrazonas/farmacologia , Camundongos , Regiões Promotoras Genéticas , Salmonella typhi/genética , Salmonella typhi/patogenicidade , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidade
12.
Cell Microbiol ; 15(1): 98-113, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22998585

RESUMO

Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.


Assuntos
Toxinas Bacterianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Bactérias Gram-Negativas/patogenicidade , Mutagênicos/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Ratos
13.
J Cell Sci ; 124(Pt 16): 2735-42, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807938

RESUMO

The DNA damage response triggered by bacterial cytolethal distending toxins (CDTs) is associated with activation of the actin-regulating protein RhoA and phosphorylation of the downstream-regulated mitogen-activated protein kinase (MAPK) p38, which promotes the survival of intoxicated (i.e. cells exposed to a bacterial toxin) cells. To identify the effectors of this CDT-induced survival response, we screened a library of 4492 Saccharomyces cerevisiae mutants that carry deletions in nonessential genes for reduced growth following inducible expression of CdtB. We identified 78 genes whose deletion confers hypersensitivity to toxin. Bioinformatics analysis revealed that DNA repair and endocytosis were the two most overrepresented signaling pathways. Among the human orthologs present in our data set, FEN1 and TSG101 regulate DNA repair and endocytosis, respectively, and also share common interacting partners with RhoA. We further demonstrate that FEN1, but not TSG101, regulates cell survival, MAPK p38 phosphorylation, RhoA activation and actin cytoskeleton reorganization in response to DNA damage. Our data reveal a previously unrecognized crosstalk between DNA damage and cytoskeleton dynamics in the regulation of cell survival, and might provide new insights on the role of chronic bacteria infection in carcinogenesis.


Assuntos
Toxinas Bacterianas/metabolismo , Sobrevivência Celular , Citoesqueleto/metabolismo , Endonucleases Flap/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/metabolismo , Toxinas Bacterianas/genética , Sobrevivência Celular/genética , Biologia Computacional , Citoesqueleto/ultraestrutura , Dano ao DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endocitose/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endonucleases Flap/genética , Células HeLa , Humanos , Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transgenes/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
FASEB J ; 26(12): 5060-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22932395

RESUMO

Ubiquitin C-terminal hydrolase-L1 (UCH-L1) is a deubiquitinating enzyme of unknown function that is highly expressed in neurons and overexpressed in several human cancers. UCH-L1 has been implicated in the regulation of phenotypic properties associated with malignant cell growth but the underlying mechanisms have not been elucidated. By comparing cells expressing catalytically active or inactive versions of UCH-L1, we found that the active enzyme enhances cell adhesion, spreading, and migration; inhibits anoikis; and promotes anchorage independent growth. UCH-L1 accumulates at the motile edge of the cell membrane during the initial phases of adhesion, colocalizes with focal adhesion kinase (FAK), p120-catenin, and vinculin, and enhances the formation of focal adhesions, which correlates with enhanced FAK activation. The involvement of UCH-L1 in the regulation of focal adhesions and adherens junctions is supported by coimmunoprecipitation with key components of these complexes, including FAK, paxillin, p120-catenin, ß-catenin, and vinculin. UCH-L1 stabilizes focal adhesion signaling in the absence of adhesion, as assessed by reduced caspase-dependent cleavage of FAK following cell detachment and sustained activity of the AKT signaling pathway. These findings offer new insights on the molecular interactions through which the deubiquitinating enzyme regulates the survival, proliferation, and metastatic potential of malignant cells.


Assuntos
Movimento Celular , Proliferação de Células , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Anoikis , Biocatálise , Western Blotting , Cateninas/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais , Células HeLa , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Ligação Proteica , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Vinculina/metabolismo , beta Catenina/metabolismo , delta Catenina , Proteína Vermelha Fluorescente
15.
Front Immunol ; 14: 1270449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274797

RESUMO

Introduction: Typhoid toxin-expressing Salmonella enterica causes DNA damage in the intestinal mucosa in vivo, activating the DNA damage response (DDR) in the absence of inflammation. To understand whether the tissue microenvironment constrains the infection outcome, we compared the immune response and DDR patterns in the colon and liver of mice infected with a genotoxigenic strain or its isogenic control strain. Methods: In situ spatial transcriptomic and immunofluorescence have been used to assess DNA damage makers, activation of the DDR, innate immunity markers in a multiparametric analysis. Result: The presence of the typhoid toxin protected from colonic bacteria-induced inflammation, despite nuclear localization of p53, enhanced co-expression of type-I interferons (IfnbI) and the inflammasome sensor Aim2, both classic features of DNA-break-induced DDR activation. These effects were not observed in the livers of either infected group. Instead, in this tissue, the inflammatory response and DDR were associated with high oxidative stress-induced DNA damage. Conclusions: Our work highlights the relevance of the tissue microenvironment in enabling the typhoid toxin to suppress the host inflammatory response in vivo.


Assuntos
Salmonella enterica , Febre Tifoide , Camundongos , Animais , Salmonella enterica/genética , Mutagênicos , Dano ao DNA , Inflamação , Reparo do DNA
16.
Cell Microbiol ; 12(11): 1622-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20608941

RESUMO

Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C-terminal hydrolase UCH-L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH-L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH-L1-negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH-L1 controls the early membrane-associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c-cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2- and AKT-dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH-L1(C90S) . These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH-L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria-based drug delivery systems.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Células Epiteliais/microbiologia , Listeria monocytogenes/patogenicidade , Salmonella enterica/patogenicidade , Ubiquitina Tiolesterase/metabolismo , Western Blotting , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Células Epiteliais/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Listeria monocytogenes/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Salmonella enterica/metabolismo , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Ubiquitinação
17.
Toxins (Basel) ; 13(6)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204481

RESUMO

The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.


Assuntos
Proteínas de Bactérias , Toxinas Bacterianas , Fatores Imunológicos , Mutagênicos , Animais , Humanos
18.
STAR Protoc ; 2(4): 100833, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585165

RESUMO

We recently characterized the association between DNA damage and immunoresponse in vivo in colonic mucosa of mice infected with a Salmonella Typhimurium strain expressing a genotoxin, known as typhoid toxin. In this protocol, we describe how to assess the extent and features of infiltrating macrophages by double immunofluorescence. Total macrophage population was determined using an F4/80 antibody, whereas the specific M2-like population was assessed using a CD206 antibody. For complete details on the use and execution of this protocol, please refer to Martin et al. (2021).


Assuntos
Mucosa Intestinal , Macrófagos , Animais , Colo , Imunofluorescência , Camundongos , Salmonella typhimurium
19.
STAR Protoc ; 2(4): 100872, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34746855

RESUMO

We recently characterized the association between DNA damage and immunoresponse in vivo in colonic mucosa of mice infected with a Salmonella Typhimurium strain expressing a genotoxin, known as typhoid toxin. In this protocol, we describe the specific steps for assessing DNA damage by the alkaline comet assay of colonic mucosal samples. The description of the comet assay protocol follows the international guidelines (Minimum Information for Reporting on the Comet Assay [Moller et al., 2020]). For complete details on the use and execution of this protocol, please refer to Martin et al. (2021).


Assuntos
Colo/citologia , Ensaio Cometa/métodos , Dano ao DNA/genética , Mucosa Intestinal/citologia , Animais , Técnicas de Cultura de Células , Camundongos
20.
iScience ; 24(5): 102420, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33898942

RESUMO

The commonly used laboratory cell lines are the first line of experimental models to study the pathogenicity and performing antiviral assays for emerging viruses. Here, we assessed the tropism and cytopathogenicity of the first Swedish isolate of SARS-CoV-2 in six different human cell lines, compared their growth characteristics, and performed quantitative proteomics for the susceptible cell lines. Overall, Calu-3, Caco2, Huh7, and 293FT cell lines showed a high-to-moderate level of susceptibility to SARS-CoV-2. In Caco2 cells, the virus can achieve high titers in the absence of any prominent cytopathic effect. The protein abundance profile during SARS-CoV-2 infection revealed cell-type-specific regulation of cellular pathways. Type-I interferon signaling was identified as the common dysregulated cellular response in Caco2, Calu-3, and Huh7 cells. Together, our data show cell-type specific variability for cytopathogenicity, susceptibility, and cellular response to SARS-CoV-2 and provide important clues to guide future studies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa