RESUMO
The molecular mediator and functional significance of meal-associated brown fat (BAT) thermogenesis remains elusive. Here, we identified the gut hormone secretin as a non-sympathetic BAT activator mediating prandial thermogenesis, which consequentially induces satiation, thereby establishing a gut-secretin-BAT-brain axis in mammals with a physiological role of prandial thermogenesis in the control of satiation. Mechanistically, meal-associated rise in circulating secretin activates BAT thermogenesis by stimulating lipolysis upon binding to secretin receptors in brown adipocytes, which is sensed in the brain and promotes satiation. Chronic infusion of a modified human secretin transiently elevates energy expenditure in diet-induced obese mice. Clinical trials with human subjects showed that thermogenesis after a single-meal ingestion correlated with postprandial secretin levels and that secretin infusions increased glucose uptake in BAT. Collectively, our findings highlight the largely unappreciated function of BAT in the control of satiation and qualify BAT as an even more attractive target for treating obesity.
Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Ingestão de Alimentos , Secretina/metabolismo , Termogênese , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Células HEK293 , Humanos , Lipólise , Camundongos , Camundongos Knockout , Camundongos Obesos , Secretina/genéticaRESUMO
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of â¼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Assuntos
Células Supressoras Mieloides , Camundongos , Humanos , Animais , Células Supressoras Mieloides/metabolismo , Ensaios de Triagem em Larga Escala , Proteoma/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismoRESUMO
The recruitment of thermogenic brite adipocytes within white adipose tissue attenuates obesity and metabolic comorbidities, arousing interest in understanding the underlying regulatory mechanisms. The molecular network of brite adipogenesis, however, remains largely unresolved. In this light, long noncoding RNAs (lncRNAs) emerged as a versatile class of modulators that control many steps within the differentiation machinery. Leveraging the naturally varying propensities of different inbred mouse strains for white adipose tissue browning, we identify the nuclear lncRNA Ctcflos as a pivotal orchestrator of thermogenic gene expression during brite adipocyte differentiation. Mechanistically, Ctcflos acts as a pleiotropic regulator, being essential for the transcriptional recruitment of the early core thermogenic regulatory program and the modulation of alternative splicing to drive brite adipogenesis. This is showcased by Ctcflos-regulated gene transcription and splicing of the key browning factor Prdm16 toward the isoform that is specific for the thermogenic gene program. Conclusively, our findings emphasize the mechanistic versatility of lncRNAs acting at several independent levels of gene expression for effective regulation of key differentiation factors to direct cell fate and function.
Assuntos
Adipogenia , RNA Longo não Codificante , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Processamento Alternativo , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , TermogêneseRESUMO
High uncoupling protein 1 (Ucp1) expression is a characteristic of differentiated brown adipocytes and is linked to adipogenic differentiation. Paracrine fibroblast growth factor 8b (FGF8b) strongly induces Ucp1 transcription in white adipocytes independent of adipogenesis. Here, we report that FGF8b and other paracrine FGFs act on brown and white preadipocytes to upregulate Ucp1 expression via a FGFR1-MEK1/2-ERK1/2 axis, independent of adipogenesis. Transcriptomic analysis revealed an upregulation of prostaglandin biosynthesis and glycolysis upon Fgf8b treatment of preadipocytes. Oxylipin measurement by LC-MS/MS in FGF8b conditioned media identified prostaglandin E2 as a putative mediator of FGF8b induced Ucp1 transcription. RNA interference and pharmacological inhibition of the prostaglandin E2 biosynthetic pathway confirmed that PGE2 is causally involved in the control over Ucp1 transcription. Importantly, impairment of or failure to induce glycolytic flux blunted the induction of Ucp1, even in the presence of PGE2 . Lastly, a screening of transcription factors identified Nrf1 and Hes1 as required regulators of FGF8b induced Ucp1 expression. Thus, we conclude that paracrine FGFs co-regulate prostaglandin and glucose metabolism to induce Ucp1 expression in a Nrf1/Hes1-dependent manner in preadipocytes, revealing a novel regulatory network in control of Ucp1 expression in a formerly unrecognized cell type.
Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Dinoprostona/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica , Glicólise , Proteína Desacopladora 1/fisiologia , Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adipogenia , Animais , Células Cultivadas , Fator 8 de Crescimento de Fibroblasto/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Mitochondrial uncoupling protein 1 (UCP1) is the crucial mechanistic component of heat production in classical brown fat and the newly identified beige or brite fat. Thermogenesis inevitably comes at a high energetic cost and brown fat, ultimately, is an energy-wasting organ. A constrained strategy that minimizes brown fat activity unless obligate will have been favored during natural selection to safeguard metabolic thriftiness. Accordingly, UCP1 is constitutively inhibited and is inherently not leaky without activation. It follows that increasing brown adipocyte number or UCP1 abundance genetically or pharmacologically does not lead to an automatic increase in thermogenesis or subsequent metabolic consequences in the absence of a plausible route of concomitant activation. Despite its apparent obviousness, this tenet is frequently ignored. Consequently, incorrect conclusions are often drawn from increased BAT or brite/beige depot mass, e.g., predicting or causally linking beneficial metabolic effects. Here, we highlight the inherently inactive nature of UCP1, with a particular emphasis on the molecular brakes and releases of UCP1 activation under physiological conditions. These controls of UCP1 activity represent potential targets of therapeutic interventions to unlock constraints and efficiently harness the energy-expending potential of brown fat to prevent and treat obesity and associated metabolic disorders.
Assuntos
Tecido Adiposo Marrom/metabolismo , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Bege/metabolismo , Animais , Metabolismo Energético , Humanos , Lipólise , TermogêneseRESUMO
We studied the metabolic phenotype of a novel Ucp1-LUC-iRFP713 knock-in reporter gene mouse model originally generated to monitor endogenous Ucp1 gene expression. Both reporter mice and reporter cells reliably reflected Ucp1 gene expression in vivo and in vitro. We here report an unexpected reduction in UCP1 content in homozygous knock-in (KI) reporter mice. As a result, the thermogenic capacity of KI mice stimulated by norepinephrine was largely blunted, making them more sensitive to an acute cold exposure. In return, these reporter mice with reduced UCP1 expression enabled us to investigate the physiological role of UCP1 in the prevention of weight gain. We observed no substantial differences in body mass across the three genotypes, irrespective of the type of diet or the ambient temperature, possibly due to the insufficient UCP1 activation. Indeed, activation of UCP1 by daily injection of the selective ß3-adrenergic receptor agonist CL316,243 resulted in significantly greater reduction of body weight in wild-type mice than in KI mice. Taken together, we conclude that the intact expression of UCP1 is essential for cold-induced thermogenesis but the presence of UCP1 per se does not protect mice from diet-induced obesity.NEW & NOTEWORTHY To study the functional role of UCP1-dependent brown adipose tissue thermogenesis for energy balance, new animal models are needed. By metabolic phenotyping of a novel mouse model with low UCP1 levels in brown fat, we demonstrate that the susceptibility to diet-induced obesity is not increased despite impaired cold-induced thermogenic capacity. Brown fat requires pharmacological activation to promote negative energy balance in diet-induced obese mice.
Assuntos
Tecido Adiposo Marrom/patologia , Tecido Adiposo Branco/patologia , Dieta Hiperlipídica , Obesidade/patologia , Proteína Desacopladora 1/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Aumento de PesoRESUMO
Uncoupling protein 1 (Ucp1) provides nonshivering thermogenesis (NST) fueled by the dissipation of energy from macronutrients in brown and brite adipocytes. The availability of thermogenic fuels is facilitated by the uptake of extracellular glucose. This conjunction renders thermogenic adipocytes in brown and white adipose tissue (WAT) a potential target against obesity and glucose intolerance. We employed wild-type (WT) and Ucp1-ablated mice to elucidate this relationship. In three experiments of similar setup, Ucp1-ablated mice fed a high-fat diet (HFD) had either reduced or similar body mass gain, food intake, and metabolic efficiency compared with WT mice, challenging the hypothesized role of this protein in the development of diet-induced obesity. Despite the absence of increased body mass, oral glucose tolerance was robustly impaired in Ucp1-ablated mice in response to HFD. Postprandial glucose uptake was attenuated in brown adipose tissue but enhanced in subcutaneous WAT of Ucp1-ablated mice. These differences were explainable by expression of the insulin-responsive member 4 of the facilitated glucose transporter family and fully in line with the capacity for NST in these very tissues. Thus, the postprandial glucose uptake of adipose tissues serves as a surrogate measure for Ucp1-dependent and independent capacity for NST. Collectively, our findings corroborate Ucp1 as a modulator of adipose tissue glucose uptake and systemic glucose homeostasis but challenge its hypothesized causal effect on the development of obesity.
Assuntos
Glucose/metabolismo , Homeostase/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Teste de Tolerância a Glucose , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Transcriptoma/genética , Proteína Desacopladora 1/genéticaRESUMO
Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown-like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).
Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese/genética , Linhagem Celular , Ácidos Graxos/metabolismo , Humanos , Lipase/metabolismo , Lipólise/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Esterol Esterase/metabolismo , Proteína Desacopladora 1RESUMO
BRITE (brown-in-white) cells are brown adipocyte-like cells found in white adipose tissue (WAT) of rodents and/or humans. The recruitment of BRITE adipocytes, referred to as the browning of WAT, is hallmarked by the expression of UCP1 and exerts beneficial metabolic effects. Here we address whether beyond systemic cues depot- and strain-specific variation in BRITE recruitment is determined by a cellular program intrinsic to progenitors. Therefore we compared the browning capacity of serum and investigated brown and BRITE adipogenesis in primary cultures of stromal-vascular cells isolated from interscapular brown adipose tissue (iBAT), inguinal white adipose tissue (iWAT) and epididymal white adipose tissue (eWAT) in two inbred mouse strains C57BL/6J (B6, a strain with low browning propensity) and 129/S6SvEv (129, a strain with high browning propensity). Paradoxically, serum collected from B6 mice was more potent in the promotion of browning than serum collected from 129 mice. Nevertheless, we demonstrate that depot- and strain-specific differences observed in vivo are pheno-copied in primary cultures in vitro, as judged by UCP1 expression and by functional analysis. Notably, primary adipocytes from 129 mice had a higher capacity for isoproterenol-induced uncoupled respiration than B6. We conclude that cues intrinsic to the progenitor cells contribute to differential BRITE adipogenesis. Further analyses demonstrate that these cues are independent of autocrine/paracrine mechanisms, BRITE progenitor abundance and genetic variation in the gene regulatory region of Ucp1 but rather depend on trans-acting factors. These results provide new insights on the molecular basis of strain and depot-specific differences in BRITE adipogenesis.
Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adipogenia/genética , Linhagem da Célula , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Expressão Gênica , Genes Reporter , Canais Iônicos/genética , Canais Iônicos/metabolismo , Isoproterenol/farmacologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Proteína Desacopladora 1RESUMO
Obesity is characterized by a substantial increase in adipose tissue that may contribute to energy balance. Recently, obesity was suggested to be associated with impaired mitochondrial function in adipocytes. In this study, we investigated the following: 1) the respiratory capacities of mitochondria isolated from mature adipocytes of female subjects whose body mass index (BMI) values were distributed over a wide range and 2) the amounts of electron transport chain complexes in these mitochondria. Fat cells were isolated from adipose tissue specimens by collagenase digestion. Mitochondria were isolated from these fat cells, and their respiratory capacity was determined using a Clark-type electrode. Fat cells were also sorted on the basis of their size into large and small fractions to assess their respiration. Western blot analyses were performed to quantify respiratory chain complex components. We also examined mitochondrial activity development during differentiation using human Simpson-Golabi-Behmel syndrome cells. Our results showed that mitochondrial respiratory capacities in adipocytes were inversely associated with BMI values but were independent of cell size. Western blot analyses revealed significantly fewer complex I and IV components in adipose tissues from obese compared with nonobese women. These results suggest that differences at the level of respiratory chain complexes might be responsible for the deterioration of respiratory capacity in obese individuals. In particular, electron transport at the level of complexes I and IV seems to be most affected.
Assuntos
Adipócitos/metabolismo , Índice de Massa Corporal , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Gordura Subcutânea/metabolismo , Adipócitos/citologia , Adipócitos/patologia , Adulto , Idoso , Respiração Celular , Tamanho Celular , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Gordura Subcutânea/citologia , Gordura Subcutânea/patologia , Adulto JovemRESUMO
AIM: Mitochondrial uncoupling protein 1 (UCP1) is a unique protein of brown adipose tissue. Upon activation by free fatty acids, UCP1 facilitates a thermogenic net proton flux across the mitochondrial inner membrane. Non-complexed purine nucleotides inhibit this fatty acid-induced activity of UCP1. The most available data have been generated from rodent model systems. In light of its role as a putative pharmacological target for treating metabolic disease, in-depth analyses of human UCP1 activity, regulation, and structural features are essential. METHODS: In the present study, we established a doxycycline-regulated cell model with inducible human or murine UCP1 expression and conducted functional studies using respirometry comparing wild-type and mutant variants of human UCP1. RESULTS: We demonstrate that human and mouse UCP1 exhibit similar specific fatty acid-induced activity but a different inhibitory potential of purine nucleotides. Mutagenesis of non-conserved residues in human UCP1 revealed structural components in α-helix 56 and α-helix 6 crucial for uncoupling function. CONCLUSION: Comparative studies of human UCP1 with other orthologs can provide new insights into the structure-function relationship for this mitochondrial carrier and will be instrumental in searching for new activators.
Assuntos
Proteína Desacopladora 1 , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Nucleotídeos de Purina/metabolismoRESUMO
Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase. In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards. By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.
Assuntos
Gerenciamento de Dados , Metadados , Pesquisa Biomédica , Gerenciamento de Dados/normas , Metadados/normas , SoftwareRESUMO
Meta-analyses of population-based genome-wide association studies (GWAS) in adults have recently led to the detection of new genetic loci for obesity. Here we aimed to discover additional obesity loci in extremely obese children and adolescents. We also investigated if these results generalize by estimating the effects of these obesity loci in adults and in population-based samples including both children and adults. We jointly analysed two GWAS of 2,258 individuals and followed-up the best, according to lowest p-values, 44 single nucleotide polymorphisms (SNP) from 21 genomic regions in 3,141 individuals. After this DISCOVERY step, we explored if the findings derived from the extremely obese children and adolescents (10 SNPs from 5 genomic regions) generalized to (i) the population level and (ii) to adults by genotyping another 31,182 individuals (GENERALIZATION step). Apart from previously identified FTO, MC4R, and TMEM18, we detected two new loci for obesity: one in SDCCAG8 (serologically defined colon cancer antigen 8 gene; p = 1.85x10(-8) in the DISCOVERY step) and one between TNKS (tankyrase, TRF1-interacting ankyrin-related ADP-ribose polymerase gene) and MSRA (methionine sulfoxide reductase A gene; p = 4.84x10(-7)), the latter finding being limited to children and adolescents as demonstrated in the GENERALIZATION step. The odds ratios for early-onset obesity were estimated at approximately 1.10 per risk allele for both loci. Interestingly, the TNKS/MSRA locus has recently been found to be associated with adult waist circumference. In summary, we have completed a meta-analysis of two GWAS which both focus on extremely obese children and adolescents and replicated our findings in a large followed-up data set. We observed that genetic variants in or near FTO, MC4R, TMEM18, SDCCAG8, and TNKS/MSRA were robustly associated with early-onset obesity. We conclude that the currently known major common variants related to obesity overlap to a substantial degree between children and adults.
Assuntos
Peso Corporal/genética , Loci Gênicos , Genoma Humano , Obesidade/genética , Adolescente , Adulto , Idade de Início , Alelos , Índice de Massa Corporal , Criança , França/epidemiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Alemanha/epidemiologia , Humanos , Obesidade/epidemiologia , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Human brain metabolism is susceptible to temperature changes. It has been suggested that the supraclavicular brown adipose tissue (BAT) protects the brain from these fluctuations by regulating heat production through the presence of uncoupling protein 1 (UCP-1). It remains unsolved whether inter-individual variation in the expression of UCP-1, which represents the thermogenic capacity of the supraclavicular BAT, is linked with brain metabolism during cold stress. Ten healthy human participants underwent 18F-FDG PET scanning of the brain under cold stimulus to determine brain glucose uptake (BGU). On a separate day, an excision biopsy of the supraclavicular fat-the fat proximal to the carotid arteries supplying the brain with warm blood-was performed to determine the mRNA expression of the thermogenic protein UCP-1. Expression of UCP-1 in supraclavicular BAT was directly related to the whole brain glucose uptake rate determined under cold stimulation (rho = 0.71, p = 0.03). In sub-compartmental brain analysis, UCP-1 expression in supraclavicular BAT was directly related to cold-stimulated glucose uptake rates in the hypothalamus, medulla, midbrain, limbic system, frontal lobe, occipital lobe, and parietal lobe (all rho ≥ 0.67, p < 0.05). These relationships were independent of body mass index and age. When analysing gene expressions of BAT secretome, we found a positive correlation between cold-stimulated BGU and DIO2. These findings provide evidence of functional links between brain metabolism under cold stimulation and UCP-1 and DIO2 expressions in BAT in humans. More research is needed to evaluate the importance of these findings in clinical outcomes, for instance, in examining the supporting role of BAT in cognitive functions under cold stress.
RESUMO
Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.
Assuntos
Inibidores de Histona Desacetilases , Ácido Tióctico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácido Tióctico/farmacologia , Histona Desacetilases/metabolismo , Antioxidantes/farmacologiaRESUMO
Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD+), but limited knowledge of NAD+ metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD+ salvage pathway (nicotinamide and 1-methylnicotinamide) in humans. Additionally, individuals with cold-stimulated BAT activation have decreased levels of metabolites from the de novo NAD+ biosynthesis pathway (tryptophan, kynurenine). Serum nicotinamide correlates positively with cold-stimulated BAT activation, whereas tryptophan and kynurenine correlate negatively. Furthermore, the expression of genes involved in NAD+ biosynthesis in BAT is related to markers of metabolic health. Our data indicate that cold increases serum tryptophan conversion to nicotinamide to be further utilized by BAT. We conclude that NAD+ metabolism is activated upon cold in humans and is probably regulated in a coordinated fashion by several tissues.
RESUMO
Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.
RESUMO
During the first month of postnatal life, adipose tissue depots of mice go through a drastic, but transient, remodeling process. Between postnatal days 10 and 20, several white fat depots display a strong and sudden surge in beige adipocyte emergence that reverts until day 30. At the same time, brown fat depots appear to undergo an opposite phenomenon. We comprehensively describe these events, their depot specificity and known environmental and genetic interactions, such as maternal diet, housing temperature and mouse strain. We further discuss potential mechanisms and plausible purposes, including the tempting hypothesis that postnatal transient remodeling creates a lasting adaptive capacity still detectable in adult animals. Finally, we propose postnatal adipose tissue remodeling as a model process to investigate mechanisms of beige adipocyte recruitment advantageous to cold exposure or adrenergic stimulation in its entirely endogenous sequence of events without external manipulation.
Assuntos
Adipócitos Bege , Obesidade , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Dieta , CamundongosRESUMO
Plant pathogens such as Phytophthora infestans that caused the Irish Potato Famine continue to threaten local and global food security. Genetic and chemical plant protection measures are often overcome by adaptation of pathogen population structures. Therefore, there is a constant demand for new, consumer- and environment-friendly plant protection strategies. Metabolic alterations induced by P. infestans in the foliage and tubers of six different potato cultivars were investigated. Using a combination of untargeted metabolomics, isolation techniques, and structure elucidation by MS and 1D/2D-NMR experiments, five steroidal glycoalkaloids, five oxylipins, and four steroidal saponins were identified. As the steroidal saponins showed antioomycete but no hemolytic activity, they may thus be considered as probably safe target substances for enrichment in breeding programs for disease resistance and as chemical lead structures for the production of nature-derived synthetic antioomycetes.
Assuntos
Phytophthora infestans , Saponinas , Solanum tuberosum , Genótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Saponinas/farmacologia , Solanum tuberosum/genéticaRESUMO
OBJECTIVE: Classical ATP-independent non-shivering thermogenesis enabled by uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) is activated, but not essential for survival, in the cold. It has long been suspected that futile ATP-consuming substrate cycles also contribute to thermogenesis and can partially compensate for the genetic ablation of UCP1 in mouse models. Futile ATP-dependent thermogenesis could thereby enable survival in the cold even when brown fat is less abundant or missing. METHODS: In this study, we explore different potential sources of UCP1-independent thermogenesis and identify a futile ATP-consuming triglyceride/fatty acid cycle as the main contributor to cellular heat production in brown adipocytes lacking UCP1. We uncover the mechanism on a molecular level and pinpoint the key enzymes involved using pharmacological and genetic interference. RESULTS: ATGL is the most important lipase in terms of releasing fatty acids from lipid droplets, while DGAT1 accounts for the majority of fatty acid re-esterification in UCP1-ablated brown adipocytes. Furthermore, we demonstrate that chronic cold exposure causes a pronounced remodeling of adipose tissues and leads to the recruitment of lipid cycling capacity specifically in BAT of UCP1-knockout mice, possibly fueled by fatty acids from white fat. Quantification of triglyceride/fatty acid cycling clearly shows that UCP1-ablated animals significantly increase turnover rates at room temperature and below. CONCLUSION: Our results suggest an important role for futile lipid cycling in adaptive thermogenesis and total energy expenditure.