Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Immunol ; 15(1): 88-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24165795

RESUMO

The p110δ subunit of phosphatidylinositol-3-OH kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report fourteen patients from seven families who were heterozygous for three different germline, gain-of-function mutations in PIK3CD (which encodes p110δ). These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and viremia due to cytomegalovirus (CMV) and/or Epstein-Barr virus (EBV). Strikingly, they had a substantial deficiency in naive T cells but an over-representation of senescent effector T cells. In vitro, T cells from patients exhibited increased phosphorylation of the kinase Akt and hyperactivation of the metabolic checkpoint kinase mTOR, enhanced glucose uptake and terminal effector differentiation. Notably, treatment with rapamycin to inhibit mTOR activity in vivo partially restored the abundance of naive T cells, largely 'rescued' the in vitro T cell defects and improved the clinical course.


Assuntos
Senescência Celular/genética , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/genética , Fosfatidilinositol 3-Quinases/genética , Linfócitos T/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Diferenciação Celular/genética , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Infecções por Vírus Epstein-Barr/sangue , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Genes Dominantes , Humanos , Immunoblotting , Síndromes de Imunodeficiência/tratamento farmacológico , Masculino , Linhagem , Fosfatidilinositol 3-Quinases/química , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Viremia/tratamento farmacológico , Viremia/genética , Viremia/virologia
2.
Proc Natl Acad Sci U S A ; 117(8): 4078-4087, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041890

RESUMO

Anthrax lethal toxin (LT) is a protease virulence factor produced by Bacillus anthracis that is required for its pathogenicity. LT treatment causes a rapid degradation of c-Jun protein that follows inactivation of the MEK1/2-Erk1/2 signaling pathway. Here we identify COP1 as the ubiquitin E3 ligase that is essential for LT-induced c-Jun degradation. COP1 knockdown using siRNA prevents degradation of c-Jun, ETV4, and ETV5 in cells treated with either LT or the MEK1/2 inhibitor, U0126. Immunofluorescence staining reveals that COP1 preferentially localizes to the nuclear envelope, but it is released from the nuclear envelope into the nucleoplasm following Erk1/2 inactivation. At baseline, COP1 attaches to the nuclear envelope via interaction with translocated promoter region (TPR), a component of the nuclear pore complex. Disruption of this COP1-TPR interaction, through Erk1/2 inactivation or TPR knockdown, leads to rapid COP1 release from the nuclear envelope into the nucleoplasm where it degrades COP1 substrates. COP1-mediated degradation of c-Jun protein, combined with LT-mediated blockade of the JNK1/2 signaling pathway, inhibits cellular proliferation. This effect on proliferation is reversed by COP1 knockdown and ectopic expression of an LT-resistant MKK7-4 fusion protein. Taken together, this study reveals that the nuclear envelope acts as a reservoir, maintaining COP1 poised for action. Upon Erk1/2 inactivation, COP1 is rapidly released from the nuclear envelope, promoting the degradation of its nuclear substrates, including c-Jun, a critical transcription factor that promotes cellular proliferation. This regulation allows mammalian cells to respond rapidly to changes in extracellular cues and mediates pathogenic mechanisms in disease states.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 6 Ativada por Mitógeno/genética , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918729

RESUMO

Constitutive photomorphogenic 1 (COP1) is the ubiquitin E3 ligase that mediates degradation of c-Jun protein upon Erk1/2 inactivation. It remains unknown how this protein degradation pathway is regulated. In this study, we investigated the roles of protein phosphatases, ubiquitin-conjugating E2 enzymes (UBE2), and an intrinsic motif of c-Jun in regulating this degradation pathway. By using pharmacological inhibitors and/or gene knockdown techniques, we identified protein phosphatase 1 (PP1) and PP2A as the phosphatases and UBE23d as the UBE2 promoting c-Jun degradation, triggered by Erk1/2 inactivation. In addition, we report that the C-terminus of c-Jun protein facilitates its degradation. The addition of a C-terminal tag or deletion of the last four amino acid residues from the C-terminus of c-Jun protects it from degradation under Erk1/2-inactivating conditions. Taken together, this study reveals that the Erk1/2 inactivation-triggered and COP1-mediated c-Jun degradation is extrinsically and intrinsically regulated, providing a new understanding of the mechanisms underlying this protein degradation pathway.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Camundongos , Modelos Biológicos , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteólise
4.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34299155

RESUMO

Proinflammatory cytokine production following infection with severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is associated with poor clinical outcomes. Like SARS CoV-1, SARS CoV-2 enters host cells via its spike protein, which attaches to angiotensin-converting enzyme 2 (ACE2). As SARS CoV-1 spike protein is reported to induce cytokine production, we hypothesized that this pathway could be a shared mechanism underlying pathogenic immune responses. We herein compared the capabilities of Middle East Respiratory Syndrome (MERS), SARS CoV-1 and SARS CoV-2 spike proteins to induce cytokine expression in human peripheral blood mononuclear cells (PBMC). We observed that only specific commercial lots of SARS CoV-2 induce cytokine production. Surprisingly, recombinant SARS CoV-2 spike proteins from different vendors and batches exhibited different patterns of cytokine induction, and these activities were not inhibited by blockade of spike protein-ACE2 binding using either soluble ACE2 or neutralizing anti-S1 antibody. Moreover, commercial spike protein reagents contained varying levels of lipopolysaccharide (LPS), which correlated directly with their abilities to induce cytokine production. The LPS inhibitor, polymyxin B, blocked this cytokine induction activity. In addition, SARS CoV-2 spike protein avidly bound soluble LPS in vitro, rendering it a cytokine inducer. These results not only suggest caution in monitoring the purity of SARS CoV-2 spike protein reagents, but they indicate the possibility that interactions of SARS CoV-2 spike protein with LPS from commensal bacteria in virally infected mucosal tissues could promote pathogenic inflammatory cytokine production.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Citocinas/metabolismo , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Modelos Biológicos , Glicoproteína da Espícula de Coronavírus/farmacologia , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Leucócitos Mononucleares/efeitos dos fármacos
5.
J Biol Chem ; 292(43): 17919-17927, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28893904

RESUMO

Anthrax is a life-threatening disease caused by infection with Bacillus anthracis, which expresses lethal factor and the receptor-binding protective antigen. These two proteins combine to form anthrax lethal toxin (LT), whose proximal targets are mitogen-activated kinase kinases (MKKs). However, the downstream mediators of LT toxicity remain elusive. Here we report that LT exposure rapidly reduces the levels of c-Jun, a key regulator of cell proliferation and survival. Blockade of proteasome-dependent protein degradation with the 26S proteasome inhibitor MG132 largely restored c-Jun protein levels, suggesting that LT promotes degradation of c-Jun protein. Using the MKK1/2 inhibitor U0126, we further show that MKK1/2-Erk1/2 pathway inactivation similarly reduces c-Jun protein, which was also restored by MG132 pre-exposure. Interestingly, c-Jun protein rebounded to normal levels 4 h following U0126 exposure but not after LT exposure. The restoration of c-Jun in U0126-exposed cells was associated with increased c-Jun mRNA levels and was blocked by inactivation of the JNK1/2 signaling pathway. These results indicate that LT reduces c-Jun both by promoting c-Jun protein degradation via inactivation of MKK1/2-Erk1/2 signaling and by blocking c-Jun gene transcription via inactivation of MKK4-JNK1/2 signaling. In line with the known functions of c-Jun, LT also inhibited cell proliferation. Ectopic expression of LT-resistant MKK2 and MKK4 variants partially restored Erk1/2 and JNK1/2 signaling in LT-exposed cells, enabling the cells to maintain relatively normal c-Jun protein levels and cell proliferation. Taken together, these findings indicate that LT reduces c-Jun protein levels via two distinct mechanisms, thereby inhibiting critical cell functions, including cellular proliferation.


Assuntos
Antígenos de Bactérias/farmacologia , Bacillus anthracis/química , Toxinas Bacterianas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Antígenos de Bactérias/química , Toxinas Bacterianas/química , Butadienos/farmacologia , Células Hep G2 , Humanos , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-jun/genética
6.
J Infect Dis ; 216(11): 1471-1475, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-28968672

RESUMO

Gastrointestinal (GI) anthrax is the most prevalent form of naturally acquired Bacillus anthracis infection, which is associated with exposure to vegetative bacteria in infected meat (carnivores) or to fermented rumen contents (herbivores). We assessed whether key host and pathogen factors modulate infectivity and progression of infection using a mouse model of GI infection. Gastric acid neutralization increases infectivity, but 30%-40% of mice succumb to infection without neutralization. Mice either fed or fasted before exposure showed similar infectivity rates. Finally, the pathogen's anthrax lethal factor is required to establish lethal infection, whereas its edema factor modulates progression and dissemination of infection.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/metabolismo , Progressão da Doença , Ácido Gástrico , Gastroenteropatias/microbiologia , Fatores de Virulência , Animais , Antraz/microbiologia , Antraz/patologia , Bacillus anthracis/fisiologia , Modelos Animais de Doenças , Feminino , Gastroenteropatias/patologia , Coração/microbiologia , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Virulência
7.
J Biol Chem ; 289(7): 4180-90, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24366872

RESUMO

Hypoxia is considered to be a contributor to the pathology associated with administration of anthrax lethal toxin (LT). However, we report here that serum lactate levels in LT-treated mice are reduced, a finding inconsistent with the anaerobic metabolism expected to occur during hypoxia. Reduced lactate levels are also observed in the culture supernatants of LT-treated cells. LT inhibits the accumulation of hypoxia-inducible factor (HIF)-1α, a subunit of HIF-1, the master regulator directing cellular responses to hypoxia. The toxin has no effect on the transcription or protein turnover of HIF-1α, but instead it acts to inhibit HIF-1α translation. LT treatment diminishes phosphorylation of eIF4B, eIF4E, and rpS6, critical components of the intracellular machinery required for HIF-1α translation. Moreover, blockade of MKK1/2-ERK1/2, but not p38 or JNK signaling, lowers HIF-1α protein levels in both normoxic and hypoxic conditions, consistent with a role for MKK1 and MKK2 as the major targets of LT responsible for the inhibition of HIF-1α translation. The physiological importance of the LT-induced translation blockade is demonstrated by the finding that LT treatment decreases the survival of hepatocyte cell lines grown in hypoxic conditions, an effect that is overcome by preinduction of HIF-1α. Taken together, these data support a role for LT in dysregulating HIF-1α and thereby disrupting homeostatic responses to hypoxia, an environmental characteristic of certain tissues at baseline and/or during disseminated infection with Bacillus anthracis.


Assuntos
Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Hipóxia/metabolismo , Biossíntese de Proteínas , Animais , Antraz/genética , Antraz/patologia , Hipóxia Celular/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Hep G2 , Humanos , Hipóxia/genética , Hipóxia/microbiologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Fosforilação/genética , Proteína S6 Ribossômica/genética , Proteína S6 Ribossômica/metabolismo
8.
J Clin Immunol ; 34(4): 436-43, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24682681

RESUMO

OBJECTIVE: Patients with hypomorphic mutations in Nuclear Factor-κB Essential Modulator (NEMO) are immunodeficient (ID) and most display ectodermal dysplasia and anhidrosis (EDA). We compared cytokine production by NEMO-ID patients with and without EDA. METHODS: PBMCs of NEMO-ID patients, four with EDA carrying E315A, C417R, D311N and Q403X, and three without EDA carrying E315A, E311_L333del and R254G, were cultured with PHA, PHA plus IL-12p70, LPS, LPS plus IFN-γ, TNF and IL-1ß. The production of various cytokines was measured in the supernatants. Fifty-nine healthy individuals served as controls. RESULTS: PBMCs of NEMO-ID patients without EDA produce subnormal amounts of IFN-γ after stimulation with PHA, but normal amounts of IFN-γ after PHA plus IL-12p70. In contrast, IFN-γ production by patients with EDA was low in both cases. Patients with EDA also generate lower PHA-stimulated IL-10 and IL-1ß than controls, whereas the production of these cytokines by patients without EDA was normal. CONCLUSION: Responses of PBMCs in NEMO-ID patients with EDA to PHA with and without IL-12p70 appear less robust than in NEMO-ID patients without EDA. This possibly indicates a better preserved NEMO function in our patients without EDA.


Assuntos
Displasia Ectodérmica/imunologia , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Quinase I-kappa B/imunologia , Síndromes de Imunodeficiência/imunologia , Interferon gama/biossíntese , Interleucina-12/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Adulto , Estudos de Casos e Controles , Displasia Ectodérmica/complicações , Displasia Ectodérmica/genética , Displasia Ectodérmica/patologia , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Quinase I-kappa B/genética , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/patologia , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/patologia , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Fito-Hemaglutininas/farmacologia , Cultura Primária de Células , Doenças da Imunodeficiência Primária , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
9.
Blood ; 118(10): 2653-5, 2011 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-21670465

RESUMO

The syndrome of monocytopenia, B-cell and NK-cell lymphopenia, and mycobacterial, fungal, and viral infections is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis, and myeloid leukemias. Both autosomal dominant and sporadic cases occur. We identified 12 distinct mutations in GATA2 affecting 20 patients and relatives with this syndrome, including recurrent missense mutations affecting the zinc finger-2 domain (R398W and T354M), suggesting dominant interference of gene function. Four discrete insertion/deletion mutations leading to frame shifts and premature termination implicate haploinsufficiency as a possible mechanism of action as well. These mutations were found in hematopoietic and somatic tissues, and several were identified in families, indicating germline transmission. Thus, GATA2 joins RUNX1 and CEBPA not only as a familial leukemia gene but also as a cause of a complex congenital immunodeficiency that evolves over decades and combines predisposition to infection and myeloid malignancy.


Assuntos
Fator de Transcrição GATA2/genética , Predisposição Genética para Doença , Monócitos/patologia , Mutação/genética , Infecções por Mycobacterium/etiologia , Infecções por Mycobacterium/patologia , Mycobacterium/patogenicidade , Genes Dominantes , Humanos , Síndrome
10.
Toxins (Basel) ; 15(9)2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37755954

RESUMO

Anthrax toxin is a critical virulence factor of Bacillus anthracis. The toxin comprises protective antigen (PA) and two enzymatic moieties, edema factor (EF) and lethal factor (LF), forming bipartite lethal toxin (LT) and edema toxin (ET). PA binds cellular surface receptors and is required for intracellular translocation of the enzymatic moieties. For this reason, anti-PA antibodies have been developed as therapeutics for prophylaxis and treatment of human anthrax infection. Assays described publicly for the control of anti-PA antibody potency quantify inhibition of LT-mediated cell death or the ET-induced increase in c-AMP levels. These assays do not fully reflect and/or capture the pathological functions of anthrax toxin in humans. Herein, we report the development of a cell-based gene reporter potency assay for anti-PA antibodies based on the rapid LT-induced degradation of c-Jun protein, a pathogenic effect that occurs in human cells. This new assay was developed by transducing Hepa1c1c7 cells with an AP-1 reporter lentiviral construct and has been qualified for specificity, accuracy, repeatability, intermediate precision, and linearity. This assay not only serves as a bioassay for LT activity, but has applications for characterization and quality control of anti-PA therapeutic antibodies or other products that target the AP-1 signaling pathway.


Assuntos
Antraz , Toxinas Bacterianas , Humanos , Fator de Transcrição AP-1/genética , Toxinas Bacterianas/genética , Exotoxinas
11.
Viruses ; 15(8)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632039

RESUMO

The recent global COVID-19 pandemic caused by SARS-CoV-2 lasted for over three years. A key measure in combatting this pandemic involved the measurement of the monoclonal antibody (mAb)-mediated inhibition of binding between the spike receptor-binding domain (RBD) and hACE2 receptor. Potency assessments of therapeutic anti-SARS-CoV-2 mAbs typically include binding or cell-based neutralization assays. We assessed the inhibitory activity of five anti-SARS-CoV-2 mAbs using ELISA, surface plasmon resonance (SPR), and four cell-based neutralization assays using different pseudovirus particles and 293T or A549 cells expressing hACE2 with or without TMPRSS2. We assessed the interchangeability between cell-based and binding assays by applying the Bland-Altman method under certain assumptions. Our data demonstrated that the IC50 [nM] values determined by eight neutralization assays are independent of the cell line, presence of TMPRSS2 enzyme on the cell surface, and pseudovirus backbone used. Moreover, the Bland-Altman analysis showed that the IC50 [nM] and KD [nM] values determined by neutralization/ELISA or by SPR are equivalent and that the anti-spike mAb activity can be attributed to one variable directly related to its tertiary conformational structure conformation, rate dissociation constant Koff. This parameter is independent from the concentrations of the components of the mAb:RBD:hACE2 complexes and can be used for a comparison between the activities of the different mAbs.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2 , Células A549 , Anticorpos Monoclonais , Anticorpos Antivirais
12.
J Exp Med ; 203(7): 1745-59, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16818673

RESUMO

Germline mutations in five autosomal genes involved in interleukin (IL)-12-dependent, interferon (IFN)-gamma-mediated immunity cause Mendelian susceptibility to mycobacterial diseases (MSMD). The molecular basis of X-linked recessive (XR)-MSMD remains unknown. We report here mutations in the leucine zipper (LZ) domain of the NF-kappaB essential modulator (NEMO) gene in three unrelated kindreds with XR-MSMD. The mutant proteins were produced in normal amounts in blood and fibroblastic cells. However, the patients' monocytes presented an intrinsic defect in T cell-dependent IL-12 production, resulting in defective IFN-gamma secretion by T cells. IL-12 production was also impaired as the result of a specific defect in NEMO- and NF-kappaB/c-Rel-mediated CD40 signaling after the stimulation of monocytes and dendritic cells by CD40L-expressing T cells and fibroblasts, respectively. However, the CD40-dependent up-regulation of costimulatory molecules of dendritic cells and the proliferation and immunoglobulin class switch of B cells were normal. Moreover, the patients' blood and fibroblastic cells responded to other NF-kappaB activators, such as tumor necrosis factor-alpha, IL-1beta, and lipopolysaccharide. These two mutations in the NEMO LZ domain provide the first genetic etiology of XR-MSMD. They also demonstrate the importance of the T cell- and CD40L-triggered, CD40-, and NEMO/NF-kappaB/c-Rel-mediated induction of IL-12 by monocyte-derived cells for protective immunity to mycobacteria in humans.


Assuntos
Antígenos CD40/fisiologia , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Quinase I-kappa B/genética , Interleucina-12/biossíntese , Infecções por Mycobacterium/genética , Infecções por Mycobacterium/imunologia , Cromossomo X , Adolescente , Adulto , Animais , Linhagem Celular Transformada , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Células L , Masculino , Camundongos , Linhagem
13.
Blood ; 115(8): 1519-29, 2010 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-20040766

RESUMO

We identified 18 patients with the distinct clinical phenotype of susceptibility to disseminated nontuberculous mycobacterial infections, viral infections, especially with human papillomaviruses, and fungal infections, primarily histoplasmosis, and molds. This syndrome typically had its onset in adulthood (age range, 7-60 years; mean, 31.1 years; median, 32 years) and was characterized by profound circulating monocytopenia (mean, 13.3 cells/microL; median, 14.5 cells/microL), B lymphocytopenia (mean, 9.4 cells/microL; median, 4 cells/microL), and NK lymphocytopenia (mean, 16 cells/microL; median, 5.5 cells/microL). T lymphocytes were variably affected. Despite these peripheral cytopenias, all patients had macrophages and plasma cells at sites of inflammation and normal immunoglobulin levels. Ten of these patients developed 1 or more of the following malignancies: 9 myelodysplasia/leukemia, 1 vulvar carcinoma and metastatic melanoma, 1 cervical carcinoma, 1 Bowen disease of the vulva, and 1 multiple Epstein-Barr virus(+) leiomyosarcoma. Five patients developed pulmonary alveolar proteinosis without mutations in the granulocyte-macrophage colony-stimulating factor receptor or anti-granulocyte-macrophage colony-stimulating factor autoantibodies. Among these 18 patients, 5 families had 2 generations affected, suggesting autosomal dominant transmission as well as sporadic cases. This novel clinical syndrome links susceptibility to mycobacterial, viral, and fungal infections with malignancy and can be transmitted in an autosomal dominant pattern.


Assuntos
Doenças Genéticas Inatas/genética , Predisposição Genética para Doença/genética , Leucopenia/genética , Infecções por Mycobacterium/genética , Micoses/genética , Síndromes Mielodisplásicas/genética , Infecções por Papillomavirus/genética , Linhagem , Adolescente , Adulto , Criança , Feminino , Fungos , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/complicações , Humanos , Contagem de Leucócitos , Leucopenia/sangue , Leucopenia/complicações , Masculino , Pessoa de Meia-Idade , Mycobacterium , Infecções por Mycobacterium/sangue , Infecções por Mycobacterium/etiologia , Micoses/sangue , Micoses/etiologia , Síndromes Mielodisplásicas/sangue , Síndromes Mielodisplásicas/etiologia , Neoplasias/sangue , Neoplasias/etiologia , Neoplasias/genética , Papillomaviridae , Infecções por Papillomavirus/sangue , Infecções por Papillomavirus/etiologia
14.
J Immunol ; 185(9): 5463-7, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20921524

RESUMO

Neutrophils isolated from BALB/c or C57BL/6 mice and treated in vitro with anthrax lethal toxin release bioactive neutrophil elastase, a proinflammatory mediator of tissue destruction. Similarly, neutrophils isolated from mice treated with anthrax lethal toxin in vivo and cultured ex vivo release greater amounts of elastase than neutrophils from vehicle-treated controls. Direct measurements from murine intestinal tissue samples demonstrate an anthrax lethal toxin-dependent increase in neutrophil elastase activity in vivo as well. These findings correlate with marked lethal toxin-induced intestinal ulceration and bleeding in neutrophil elastase(+/+) animals, but not in neutrophil elastase(-/-) animals. Moreover, neutrophil elastase(-/-) mice have a significant survival advantage over neutrophil elastase(+/+) animals following exposure to anthrax lethal toxin, thereby establishing a key role for neutrophil elastase in mediating the deleterious effects of anthrax lethal toxin.


Assuntos
Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Intestinos/enzimologia , Intestinos/patologia , Neutrófilos/enzimologia , Elastase Pancreática/imunologia , Animais , Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Intestinos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Elastase Pancreática/biossíntese
15.
N Engl J Med ; 357(16): 1608-19, 2007 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17881745

RESUMO

BACKGROUND: The hyper-IgE syndrome (or Job's syndrome) is a rare disorder of immunity and connective tissue characterized by dermatitis, boils, cyst-forming pneumonias, elevated serum IgE levels, retained primary dentition, and bone abnormalities. Inheritance is autosomal dominant; sporadic cases are also found. METHODS: We collected longitudinal clinical data on patients with the hyper-IgE syndrome and their families and assayed the levels of cytokines secreted by stimulated leukocytes and the gene expression in resting and stimulated cells. These data implicated the signal transducer and activator of transcription 3 gene (STAT3) as a candidate gene, which we then sequenced. RESULTS: We found increased levels of proinflammatory gene transcripts in unstimulated peripheral-blood neutrophils and mononuclear cells from patients with the hyper-IgE syndrome, as compared with levels in control cells. In vitro cultures of mononuclear cells from patients that were stimulated with lipopolysaccharide, with or without interferon-gamma, had higher tumor necrosis factor alpha levels than did identically treated cells from unaffected persons (P=0.003). In contrast, the cells from patients with the hyper-IgE syndrome generated lower levels of monocyte chemoattractant protein 1 in response to the presence of interleukin-6 (P=0.03), suggesting a defect in interleukin-6 signaling through its downstream mediators, one of which is STAT3. We identified missense mutations and single-codon in-frame deletions in STAT3 in 50 familial and sporadic cases of the hyper-IgE syndrome. Eighteen discrete mutations, five of which were hot spots, were predicted to directly affect the DNA-binding and SRC homology 2 (SH2) domains. CONCLUSIONS: Mutations in STAT3 underlie sporadic and dominant forms of the hyper-IgE syndrome, an immunodeficiency syndrome involving increased innate immune response, recurrent infections, and complex somatic features.


Assuntos
Síndrome de Job/genética , Mutação de Sentido Incorreto , Fator de Transcrição STAT3/genética , Deleção de Sequência , Adulto , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Interleucina-6/fisiologia , Leucócitos/imunologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Análise de Sequência de DNA
16.
Sci Rep ; 10(1): 2476, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051479

RESUMO

PEGylated recombinant human granulocyte colony stimulating factor (pegfilgrastim) is used clinically to accelerate immune reconstitution following chemotherapy and is being pursued for biosimilar development. One challenge to overcome in pegfilgrastim biosimilar development is establishing pharmacokinetic (PK) similarity, which is partly due to the degree of PK variability. We herein report that commercially available G-CSF and PEG ELISA detection kits have different capacities to detect pegfilgrastim aggregates that rapidly form in vitro in physiological conditions. These aggregates can be observed using SDS-PAGE, size-exclusion chromatography, dynamic light scattering, and real-time NMR analysis and are associated with decreased bioactivity as reflected by reduced drug-induced cellular proliferation and STAT3 phosphorylation. Furthermore, individual variability in the stability and detectability of pegfilgrastim in human sera is also observed. Pegfilgrastim levels display marked subject variability in sera from healthy donors incubated at 37 °C. The stability patterns of pegfilgrastim closely match the stability patterns of filgrastim, consistent with a key role for pegfilgrastim's G-CSF moiety in driving formation of inactive aggregates. Taken together, our results indicate that individual variability and ELISA specificity for inactive aggregates are key factors to consider when designing and interpreting studies involving the measurement of serum pegfilgrastim concentrations.


Assuntos
Variação Biológica Individual , Filgrastim/farmacocinética , Polietilenoglicóis/farmacocinética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ensaio de Imunoadsorção Enzimática/normas , Humanos , Camundongos , Fator de Transcrição STAT3/metabolismo
17.
Int J Biochem Cell Biol ; 39(1): 20-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17008119

RESUMO

Lethal factor (LF), along with its receptor-binding partner protective antigen (PA), forms lethal toxin (LT), a critical virulence factor for Bacillus anthracis. LF is a Zn(2+) protease that cleaves specific mitogen activated protein kinase kinases (MAPKKs), inactivating signal transduction intermediates required for normal immune function. Initial research emphasized the role of LT in attenuating pro-inflammatory responses by macrophages, the primary targets of infection. More recent studies have revealed that LT affects a broad range of immune cells. In addition to direct effects on macrophages and neutrophils, LT suppresses the costimulatory functions of dendritic cells, thereby impeding essential cross-talk between innate and adaptive immune responses. Moreover, LT acts directly on T and B lymphocytes, blocking antigen receptor-dependent proliferation, cytokine production and Ig production. In this manner, LT mounts a broad-based attack on host immunity, thus providing B. anthracis with multiple mechanisms for avoiding protective host responses.


Assuntos
Antraz/imunologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Leucócitos Mononucleares/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Metaloproteases/imunologia , Animais , Antraz/enzimologia , Antraz/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/enzimologia , Toxinas Bacterianas/metabolismo , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Metaloproteases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
18.
J Leukoc Biol ; 79(6): 1328-38, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16614257

RESUMO

We report a novel mechanism, involving up-regulation of the interleukin (IL)-7 cytokine receptor, by which human immunodeficiency virus (HIV) enhances its own production in monocyte-derived macrophages (MDM) in vitro. HIV-1 infection or treatment of MDM cultures with exogenous HIV-1 Tat(86) protein up-regulates the IL-7 receptor (IL-7R) alpha-chain at the levels of steady-state RNA, protein, and functional IL-7R on the cell surface (as measured by ligand-induced receptor signaling). This IL-7R up-regulation is associated with increased amounts of HIV-1 virions in the supernatants of infected MDM cultures treated with exogenous IL-7 cytokine. The overall effect of IL-7 stimulation on HIV replication in MDM culture supernatants is typically in the range of one log and greater. The results are consistent with a model in which HIV infection produces the Tat protein, which in turn up-regulates IL-7R in a paracrine manner. This results in increased IL-7R signaling in response to the IL-7 cytokine, which ultimately promotes early events in HIV replication, including binding/entry and possibly other steps prior to reverse transcription. The results suggest that the effects of IL-7 on HIV replication in MDM should be considered when analyzing and designing clinical trials involving treatment of patients with IL-7 or Tat vaccines.


Assuntos
Produtos do Gene tat/fisiologia , HIV-1/fisiologia , Interleucina-7/fisiologia , Macrófagos/virologia , Modelos Biológicos , Replicação Viral/fisiologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Células Cultivadas/virologia , Genes tat , Transcriptase Reversa do HIV/metabolismo , Humanos , Interleucina-7/efeitos adversos , Interleucina-7/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Comunicação Parácrina , Fator de Transcrição STAT3/metabolismo , Vírion , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana
19.
Sci STKE ; 2002(114): pe1, 2002 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-11784889

RESUMO

The newly discovered cytokine interleukin (IL)-23 shares some in vivo functions with IL-12, including the activation of the transcription factor STAT4 (signal tranducer and activator of transcription-4). Indeed, the receptors for each appear to share one subunit, but also have at least one distinct subunit. Frucht discusses the similarities of IL-12 and IL-23 and the effects that distinguish one from the other. In contrast to IL-12, IL-23 appears to participate in the proliferative signal in memory T cells. More functions that distinguish IL-23 from IL-12 are likely to be uncovered as soon as the other component(s) of the IL-23 receptor are molecularly cloned and characterized.


Assuntos
Memória Imunológica , Interleucinas/fisiologia , Linfócitos T/imunologia , Animais , Proteínas de Ligação a DNA/metabolismo , Dimerização , Humanos , Interleucina-12/metabolismo , Interleucina-23 , Subunidade p19 da Interleucina-23 , Interleucinas/metabolismo , Receptores de Interleucina/metabolismo , Receptores de Interleucina-12 , Fator de Transcrição STAT4 , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Transativadores/metabolismo
20.
J Leukoc Biol ; 73(1): 49-56, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12525561

RESUMO

Recent discoveries of interleukin (IL)-23, its receptor, and its signal-transduction pathway add to our understanding of cellular immunity. IL-23 is a heterodimer, comprising IL-12 p40 and the recently cloned IL-23-specific p19 subunit. IL-23 uses many of the same signal-transduction components as IL-12, including IL-12Rbeta1, Janus kinase 2, Tyk2, signal transducer and activator of transcription (Stat)1, Stat3, Stat4, and Stat5. This may explain the similar actions of IL-12 and IL-23 in promoting cellular immunity by inducing interferon-gamma production and proliferative responses in target cells. Additionally, both cytokines promote the T helper cell type 1 costimulatory function of antigen-presenting cells. IL-23 does differ from IL-12 in the T cell subsets that it targets. Whereas IL-12 acts on naïve CD4+ T cells, IL-23 preferentially acts on memory CD4+ T cells. This review summarizes recent advances regarding IL-23, providing a functional and mechanistic basis for the unique niche that IL-23 occupies in cellular immunity.


Assuntos
Interleucinas/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Humanos , Imunidade Celular , Interleucina-12/imunologia , Interleucina-23 , Subunidade p19 da Interleucina-23 , Interleucinas/fisiologia , Camundongos , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa