Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 185(8): 1356-1372.e26, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35395179

RESUMO

Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.


Assuntos
Neoplasias da Mama , Microbiota , Metástase Neoplásica , Animais , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/patologia
2.
Can J Microbiol ; 64(1): 41-48, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29078062

RESUMO

Previous studies found that Bacillus subtilis BS02 and B. subtilis subsp. natto BS04 isolated in our laboratory could activate the immune response of murine macrophages in vitro. This study aims to investigate the effects of dietary supplementation with Bacillus species spores on the systemic cellular immune response in BALB/C mice. Results showed that both B. subtilis BS02 and B. subtilis natto BS04 enhanced the phagocytic function of the mononuclear phagocyte system (MPS) and the cytotoxicity of natural killer (NK) cells. In addition, B. subtilis BS02 could increase the respiratory burst activity of blood phagocytes. Furthermore, B. subtilis BS02 and B. subtilis natto BS04 increased the percentage of gamma-interferon-producing CD4+ cells and CD8+ T-cells, but only BS04 increased the percentage of CD3+ cells and CD3+ CD4+ cells in splenocytes. However, there were no effects on other subsets of splenic lymphocytes and mitogen-induced splenic lymphocyte proliferation. All data suggested that oral administration of B. subtilis BS02 or B. subtilis natto BS04 could significantly enhance cellular immunity in BALB/C mice by increasing phagocytic activity of MPS and cytotoxic activity of NK cells in a strain-specific manner.


Assuntos
Bacillus subtilis/imunologia , Imunidade Celular/imunologia , Probióticos , Esporos Bacterianos/imunologia , Animais , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/imunologia , Linfócitos T/imunologia
3.
J Cell Biochem ; 118(9): 2664-2671, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28067413

RESUMO

Echinacea purpurea is an indigenous North American purple cone flower used by North Americans for treatment of various infectious diseases and wounds. This study investigated the effect of polysaccharide enriched extract of Echinacea purpurea (EE) on the polarization of macrophages. The results showed that 100 µg/mL of EE could markedly activate the macrophage by increasing the expression of CD80, CD86, and MHCII molecules. Meanwhile, EE upregulated the markers of classically activated macrophages (M1) such as CCR7 and the production of IL-1ß, IL-6, IL-12p70, TNF-αand NO. The functional tests showed that EE enhanced the phagocytic and intracellular bactericidal activity of macrophage against ST. Furthermore, we demonstrated that JNK are required for EE-induced NO and M1-related cytokines production. Together, these results demonstrated that EE can polarize macrophages towards M1 phenotype, which is dependent on the JNK signaling pathways. J. Cell. Biochem. 118: 2664-2671, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Células da Medula Óssea/metabolismo , Echinacea/química , MAP Quinase Quinase 4/metabolismo , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Citocinas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Camundongos , Extratos Vegetais/química
4.
Appl Microbiol Biotechnol ; 101(7): 3015-3026, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27957629

RESUMO

Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H2O2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H2O2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H2O2 treatment, and Bacillus pre-protection + H2O2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H2O2 treatments. Then, based on OS model, 300 µmol/L H2O2 was added into medium of H2O2 and Bacillus pre-protection + H2O2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H2O2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Mucosa Intestinal/metabolismo , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Antioxidantes , Apoptose/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , Peróxido de Hidrogênio/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator de Transcrição NF-E2/genética , Suínos
5.
Amino Acids ; 46(5): 1177-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481486

RESUMO

Pidotimod is a synthetic dipeptide with biological and immunological activity in innate immune responses. It has been reported that pidotimod could promote functional maturation of dendritic cells, but little is known about the regulation of macrophages. Recent studies have demonstrated that M1 or M2 polarized macrophages are of great importance for responses to microorganism infection or host mediators. The aim of this study was to determine the effectiveness of pidotimod on mouse bone marrow-derived macrophage polarization and its function. The results showed that pidotimod had no influence on M1-polarized macrophage. While interestingly, a significant increase of M2 marker gene expression (Arg1, Fizz1, Ym1, MR) was observed (p < 0.01) in IL-4-induced M2 macrophage treated with pidotimod. In addition, cell surface expression of mannose receptor was dramatically enhanced using fluorescence activated cell sorter (FACS) analysis. Furthermore, the function of M2 macrophage was also determinated. The results showed that the supernatant of pidotimod-treated M2 macrophage could increase the migration (p < 0.05) and enhance the wound closure rate (p < 0.05) of MLE-12 cells. Collectively, it could be concluded that pidotimod significantly facilitated IL-4-induced M2 macrophage polarization and improves its function.


Assuntos
Polaridade Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Peptídeos/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Tiazolidinas/farmacologia , Animais , Biomarcadores/análise , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Pirrolidonocarboxílico/farmacologia
6.
Poult Sci ; 103(10): 104072, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068698

RESUMO

The continuous expansion of intestinal stem cells (ISCs) is crucial for maintaining the renewal of the intestinal epithelium, particularly in inflammatory conditions. It remains largely unknown how the internal microbiota repair damage to the internal mucosal barrier. Hence, investigating potential anti-inflammatory probiotics from the intestinal symbolic microbes of broilers and analyzing their mechanism of action to support the intestinal mucosal barrier function can offer novel regulatory tools to alleviate broiler enteritis. In this research, we utilized in vivo broilers plus ex vivo organoids model to thoroughly examine the effectiveness of Lactobacillus reuteri (LR) in protecting the integrity of the intestinal mucosa during lipopolysaccharide-induced (LPS-induced) enteritis in broilers. The findings indicated that LR feeding maintained intestinal morphological and structural integrity, enhanced proliferation of intestinal epithelial cells, and inhibited cell apoptosis and inflammatory response against the deleterious effects triggered by LPS. Simultaneously, LR enhanced ISCs activity and stimulated intestinal epithelial regeneration to protect the intestinal barrier during LPS-induced injury conditions. The coculture system of LR and ileum organoids revealed that LR increased the growth of organoids and attenuated LPS-stimulated damage to organoids. Furthermore, the LPS-induced decrease in ISC activity was rescued by reactivation of Wnt/ß-catenin signaling by LR ex vivo and in vivo. This research revealed that LR promoted the expansion of ISCs and intestinal epithelial cell renewal by regulating the Wnt/ß-catenin signaling pathway, thereby maintaining the integrity of the intestinal mucosal barrier. This finding provided theoretical support for lactobacillus as a probiotic additive in livestock feed to improve intestinal inflammation and treat intestinal diseases.


Assuntos
Galinhas , Mucosa Intestinal , Limosilactobacillus reuteri , Lipopolissacarídeos , Probióticos , Células-Tronco , Via de Sinalização Wnt , Animais , Limosilactobacillus reuteri/fisiologia , Probióticos/farmacologia , Probióticos/administração & dosagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Via de Sinalização Wnt/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/prevenção & controle , Enterite/veterinária , Enterite/induzido quimicamente , Enterite/prevenção & controle , Enterite/microbiologia , Dieta/veterinária , Masculino , Ração Animal/análise
7.
Int Immunopharmacol ; 130: 111675, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377852

RESUMO

The aim of our research was to investigate the effects of Bacillus amyloliquefaciens SC06 on growth performance, immune status, intestinal stem cells (ISC) proliferation and differentiation, and gut microbiota in weaned piglets. Twelve piglets (male, 21 days old, 6.11 ± 0.12 kg) were randomly allocated to CON and SC06 (1 × 108 cfu/kg to diet) groups. This experiment lasted three weeks. Our results showed that SC06 increased (P < 0.05) growth performance and reduced the diarrhea rate in weaned piglets. In addition, SC06 increased intestinal morphology and interleukin (IL)-10 levels, and decreased (P < 0.01) necrosis factor (TNF-α) levels in jejunum and serum. Moreover, weaning piglets fed SC06 had a better balance of colonic microbiota, with an increase in the abundance of Lactobacillus. Furthermore, SC06 enhanced ISCs proliferation and induced its differentiation to goblet cells via activating wnt/ß-catenin pathway in weaned piglets and intestinal organoid. Taken together, SC06 supplementation improved the growth performance and decreased inflammatory response of piglets by modulating intestinal microbiota, thereby accelerating ISC proliferation and differentiation and promoting epithelial barrier healing.


Assuntos
Bacillus amyloliquefaciens , Microbioma Gastrointestinal , Animais , Masculino , Proliferação de Células , Suplementos Nutricionais/análise , Intestinos/fisiologia , Suínos , Desmame
8.
Food Res Int ; 195: 114950, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277228

RESUMO

Rosa roxburghii Tratt (RRT), a traditional Chinese plant known as the 'King of Vitamin C (VitC; ascorbic acid, AsA)', contains a wealth of nutrients and functional components, including polysaccharides, organic acids, flavonoids, triterpenes, and high superoxide dismutase (SOD) activity. The various functional components of RRT suggest that it may theoretically have a stronger potential for alleviating colitis compared to VitC. This study aims to verify whether RRT has a stronger ability to alleviate colitis than equimolar doses of VitC and to explore the mechanisms underlying this improvement. Results showed that RRT significantly mitigated body weight loss, intestinal damage, elevated inflammation levels, and compromised barriers in mice induced by Dextran sulfate sodium (DSS). Additionally, RRT enhanced the diversity and composition of intestinal microbiota in these DSS-induced mice. Colon RNA sequencing analysis revealed that compared to VitC, RRT further downregulated multiple immune-related signaling pathways, particularly the B cell receptor (BCR) pathway, which is centered around genes like Btk and its downstream PI3K-AKT, NF-κB, and MAPK signaling pathways. Correlation analysis between microbiota and genes demonstrated a significant relationship between the taxa improved by RRT and the key genes in the BCR and its downstream signaling pathways. Overall, RRT exhibited superior capabilities in alleviating DSS-induced colitis compared to VitC by decreasing intestinal inflammation and modulating BCR and its downstream signaling pathways, potentially regulated by the improved intestinal microbiota.


Assuntos
Ácido Ascórbico , Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Rosa , Transdução de Sinais , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Rosa/química , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Masculino , Colo/metabolismo , Colo/microbiologia , Colo/efeitos dos fármacos , Modelos Animais de Doenças
9.
Int Immunopharmacol ; 142(Pt B): 113129, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39293317

RESUMO

The involvement of the inflammatory response has been linked to the development of liver illnesses. As medications with the potential to prevent and cure liver illness, probiotics have garnered an increasing amount of interest in recent years. The present study used a piglet model with acute liver injury (ALI) induced by lipopolysaccharides (LPS) to investigate the regulatory mechanisms of Bacillus amyloliquefaciens SC06. Our findings indicated that SC06 mitigated the liver structural damage caused by LPS, as shown by the decreased infiltration of inflammatory cells and the enhanced structural integrity. In addition, After the administration of SC06, there was a reduction in the increased levels of the liver damage markers. In the LPS group, there was an increase in the mRNA expression of inflammatory cytokines, apoptosis cell rate, and genes associated with apoptosis, while these alterations were mitigated by SC06 administration. Furthermore, SC06 prevented pigs from suffering liver damage by preventing the activation of the NLRP3 inflammasome, which was normally triggered by LPS. The examination of serum metabolic pathways found that ALI was related to several metabolic processes, including primary bile acid biosynthesis, pentose and glucuronate interconversions and the metabolism of phenylalanine. Significantly, our research revealed that the administration of SC06 effectively controlled the concentrations of bile acids in the serum. The correlation results also revealed clear relationships between bile acids and liver characteristics and NLRP3 inflammasome-related genes. However, in vitro experiments revealed that SC06 could not directly inhibit NLRP3 activation under ATP, monosodium urate, and nigericin stimulation, while taurochenodeoxycholic acid (TCDCA) activated NLRP3 inflammasome related genes. In conclusion, our study proved that the hepaprotective effect of SC06 on liver injury, which was closely associated with the restoration of bile acids homeostasis and NLRP3 inflammasome inhibition.

10.
Trends Cell Biol ; 33(7): 583-593, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36522234

RESUMO

Cancer metastasis is the leading cause of mortality in patients with cancer. Theories have been developed to explain the causes and principles of metastasis. Metastasis is attributed to cancer cell-intrinsic properties and the extrinsic cellular environment. In recent years, the intratumor microbiota has been identified as an integral tumor component and may functionally regulate various aspects of metastasis. These novel discoveries in intratumor microbiota reshape the framework of our understanding of metastasis and reveal a new path for studies on cancer progression and clinical cancer management. Here, we summarize recent advances in the emerging roles of intratumor microbiota in cancer metastasis and discuss the challenges and implications for cancer treatment.


Assuntos
Microbiota , Neoplasias , Humanos , Neoplasias/microbiologia , Neoplasias/patologia , Metástase Neoplásica
11.
Front Microbiol ; 14: 1138903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007491

RESUMO

Necrotic enteritis (NE), especially subclinical NE (SNE), without clinical symptoms, in chicks has become one of the most threatening problems to the poultry industry. Therefore, increasing attention has been focused on the research and application of effective probiotic strains as an alternative to antibiotics to prevent SNE in broilers. In the present study, we evaluated the effects of Bacillus subtilis DSM29784 (BS) on the prevention of subclinical necrotic enteritis (SNE) in broilers. A total of 480 1-day-old broiler chickens were randomly assigned to four dietary treatments, each with six replicates pens of twenty birds for 63 d. The negative (Ctr group) and positive (SNE group) groups were only fed a basal diet, while the two treatment groups received basal diets supplemented with BS (1 × 109 colony-forming units BS/kg) (BS group) and 10mg/kg enramycin (ER group), respectively. On days 15, birds except those in the Ctr group were challenged with 20-fold dose coccidiosis vaccine, and then with 1 ml of C. perfringens (2 × 108) at days 18 to 21 for SNE induction. BS, similar to ER, effectively attenuated CP-induced poor growth performance. Moreover, BS pretreatment increased villi height, claudin-1 expression, maltase activity, and immunoglobulin abundance, while decreasing lesional scores, as well as mucosal IFN-γ and TNF-α concentrations. In addition, BS pretreatment increased the relative abundance of beneficial bacteria and decreased that of pathogenic species; many lipid metabolites were enriched in the cecum of treated chickens. These results suggest that BS potentially provides active ingredients that may serve as an antibiotic substitute, effectively preventing SNE-induced growth decline by enhancing intestinal health in broilers.

12.
Antioxidants (Basel) ; 12(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37759988

RESUMO

Earlier studies have shown that selenomethionine (SM) supplements in broiler breeders had higher deposition in eggs, further reduced the mortality of chicken embryos, and exerted a stronger antioxidant ability in offspring than sodium selenite (SS). Since previous studies also confirmed that Se deposition in eggs was positively correlated with maternal supplementation, this study aimed to directly investigate the antioxidant activities and underlying mechanisms of SS and SM on the chicken hepatocellular carcinoma cell line (LMH). The cytotoxicity results showed that the safe concentration of SM was up to 1000 ng/mL, while SS was 100 ng/mL. In Se treatments, both SS and SM significantly elevated mRNA stability and the protein synthesis rate of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR), two Se-containing antioxidant enzymes. Furthermore, SM exerted protective effects in the H2O2-induced oxidant stress model by reducing free radicals (including ROS, MDA, and NO) and elevating the activities of antioxidative enzymes, which performed better than SS. Furthermore, the results showed that cotreatment with SM significantly induced apoptosis induced by H2O2 on elevating the content of Bcl-2 and decreasing caspase-3. Moreover, investigations of the mechanism revealed that SM might exert antioxidant effects on H2O2-induced LMHs by activating the Nrf2 pathway and enhancing the activities of major antioxidant selenoenzymes downstream. These findings provide evidence for the effectiveness of SM on ameliorating H2O2-induced oxidative impairment and suggest SM has the potential to be used in the prevention or adjuvant treatment of oxidative-related impairment in poultry feeds.

13.
Int J Biol Macromol ; 253(Pt 3): 126931, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37722632

RESUMO

In this study, we developed a novel delivery system using carboxymethyl konjac glucomannan-chitosan (CMKGM-CS) nanogels stabilized single and double emulsion incorporated into alginate hydrogel as microcapsule matrix for intestinal-targeted delivery of probiotics. Through in vitro experiments, it was demonstrated that alginate hydrogel provided favorable biocompatible growth conditions for the proliferation of Lactobacillus reuteri (LR). The alginate hydrogel containing single (ASE) or double emulsions (ACG) enhanced the resistance of LR to various adverse environments. Simulated gastrointestinal digestion experiments revealed that the survivability of LR in free, CON, ASE and ACG group decreased by 6.45 log CFU/g, 4.21 log CFU/g, 1.26 log CFU/g and 0.65 log CFU/g, respectively. In vivo studies conducted in mice showed that ACG maintained its integrity during passage through the stomach and released the probiotics in the targeted intestinal area, whereas the pure alginate hydrogels (CON) were prematurely released in the gastrointestinal tract. Moreover, the viable counts of ACG in different intestinal segments (jejunum, ileum, cecum, and colon) were increased by 1.11, 1.42, 1.68, and 1.89 log CFU/g, respectively, after 72 h of oral administration compared to the CON group. This research contributed valuable insights into the development of an effective microbial delivery system with potential applications in the biopharmaceutical and food industries.


Assuntos
Quitosana , Probióticos , Animais , Camundongos , Nanogéis , Alginatos , Cápsulas , Emulsões , Hidrogéis
14.
STAR Protoc ; 3(4): 101624, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36208450

RESUMO

Intratumor microbiota is a dynamic cancer component that can be carried over by metastatic tumor cells to distal organs. This protocol was developed to genetically label Staphylococcus xylosus and trace the recombinant strain in vivo in the tumor. We optimized the recombination-based gene replacement protocol to insert a GFP-Erythromycin resistant protein (Erm) cassette. The inserted cassette facilitates the tracking of the recombinant strain, allowing a sensitive interrogation of microbial dynamics with high temporal and spatial resolution. For complete details on the use and execution of this protocol, please refer to Fu et al. (2022).


Assuntos
Eritromicina , Staphylococcus , Staphylococcus/genética , Staphylococcus/metabolismo , Eritromicina/metabolismo , Proteínas/metabolismo
15.
Antioxidants (Basel) ; 11(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552664

RESUMO

The current study investigated the effects of the maternal Zn source in conjunction with their offspring's dietary Zn supplementation on the growth performance, antioxidant status, Zn concentration, and immune function of the offspring. It also explored whether there is an interaction between maternal Zn and their offspring's dietary Zn. One-day-old Lingnan Yellow-feathered broilers (n = 800) were completely randomized (n = 4) between two maternal dietary supplemental Zn sources [maternal Zn−Gly (oZn) vs. maternal ZnSO4 (iZn)] × two offspring dietary supplemental Zn doses [Zn-unsupplemented control diet (CON), the control diet + 80 mg of Zn/kg of diet as ZnSO4]. oZn increased progeny ADG and decreased offspring mortality across all periods, especially during the late periods (p < 0.05). The offspring diet supplemented with Zn significantly improved ADG and decreased offspring mortality over the whole period compared with the CON group (p < 0.05). There were significant interactions between the maternal Zn source and offspring dietary Zn with regards to progeny mortality during the late phase and across all phases as a whole (p < 0.05). Compared with the iZn group, the oZn treatment significantly increased progeny liver and serum Zn concentrations; antioxidant capacity in the liver, muscle, and serum; and the IgM concentration in serum; while also decreasing progeny serum IL-1 and TNF-α cytokine secretions (p < 0.05). Similar results were observed when the offspring diet was supplemented with Zn compared with the CON group; moreover, adding Zn to the offspring diet alleviated progeny stress by decreasing corticosterone levels in the serum when compared to the CON group (p < 0.05). In conclusion, maternal Zn−Gly supplementation increased progeny performance and decreased progeny mortality and stress by increasing progeny Zn concentration, antioxidant capacity, and immune function compared with the same Zn levels from ZnSO4. Simultaneously, Zn supplementation in the progeny's diet is necessary for the growth of broilers.

16.
STAR Protoc ; 3(4): 101765, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36209427

RESUMO

The tissue-resident microbiota is an integral component of multiple tumor types, but it remains challenging to characterize its abundance and composition due to its low biomass. Here, we describe an optimized protocol for quantification and profiling of tissue-resident microbiota. The major optimized steps include DNA extraction, qPCR, 16S library construction, and bioinformatics analysis. This protocol enables robust and accurate characterization of the dynamics of normal and tumor tissue-resident microbiota at its physiological abundance from both mouse and human origins. For complete details on the use and execution of this protocol, please refer to Fu et al. (2022).


Assuntos
Microbiota , Neoplasias , Humanos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Biologia Computacional
17.
Antioxidants (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36139735

RESUMO

Reuterin is well-known for its broad-spectrum antimicrobial ability, while the other potential bioactivity is not yet clear. The present study aims to investigate the immunomodulatory activity of reuterin on chicken macrophage HD11 cells for the first time and evaluate whether reuterin is able to regulate the lipopolysaccharide-stimulated inflammatory response. The results showed that the safe medication range of reuterin was less than 250 µM. Reuterin treatment for 6 h decreased the transcriptional of CD86, IL-1ß and iNOS and increased the expression of CD206 in a dose-dependent way, but reuterin treatment for 12 h contrary increased the expression of IL-1ß, IL-6 and IL-10. However, it was noticed that reuterin treatment for 12 h significantly decreased the production of reactive oxygen species (ROS) and suppressed the phagocytosis activity of HD11 macrophages against bacteria. Further, the results showed that preincubation or coincubation with reuterin significantly attenuated the promotive effects of lipopolysaccharide (LPS) on transcription of proinflammatory cytokines (including IL-1ß, IL-6 and TNF-α) and obviously inhibited nitric oxide (NO) production as well as the protein expression of inducible nitric oxide synthase (iNOS). Meanwhile, Mechanism studies implied that reuterin might exert an anti-inflammatory effect on LPS-stimulated cells by downregulating the expression of TLR4/MyD88/TRAF6 and blocking the activation of NF-κB as well as MAPKs signaling pathways. Additionally, it was found that both pretreatment and cotreatment with reuterin remarkably inhibited the oxidative stress induced by LPS stimulation by activating the Nrf2/HO-1 signaling pathway and enhancing the activities of antioxidative enzymes. These findings suggested the immunoregulatory function of reuterin and indicated this bacterial metabolite was able to inhibit the inflammation and oxidative stress of HD11 macrophages once exposed to LPS stimulation.

18.
Antioxidants (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36139773

RESUMO

Environmental factors such as high temperature can cause oxidative stress and negatively affect the physiological status and meat quality of broiler chickens. The study was conducted to evaluate the effects of dietary maternal Zn-Gly or ZnSO4 supplementation on embryo mortality, hepatocellular mitochondrial morphology, liver antioxidant capacity and the expression of related genes involved in liver oxidative mechanisms in heat-stressed broilers. A total of 300 36-week-old Lingnan Yellow broiler breeders were randomly divided into three treatments: (1) control (basal diet, 24 mg zinc/kg); (2) inorganic ZnSO4 group (basal diet +80 mg ZnSO4/kg); (3) organic Zn-Gly group (basal diet +80 mg Zn-Gly/kg). The results show that maternal zinc alleviated heat stress-induced chicken embryo hepatocytes' oxidative stress by decreasing the content of ROS, MDA, PC, 8-OHdG, and levels of HSP70, while enhancing T-SOD, T-AOC, CuZn-SOD, GSH-Px, CTA activities and the content of MT. Maternal zinc alleviated oxidative stress-induced mitochondrial damage in chick embryo hepatocytes by increasing mitochondrial membrane potential and UCP gene expression; and Caspase-3-mediated apoptosis was alleviated by increasing CuZn-SOD and MT gene expression and decreasing Bax gene expression and reducing the activity of caspase 3. Furthermore, maternal zinc treatment significantly increased Nrf2 gene expression. The results above suggest that maternal zinc can activate the Nrf2 signaling pathway in developing chick embryos, enhance its antioxidant function and reduce the apoptosis-effecting enzyme caspase-3 activities, thereby slowing oxidative stress injury and tissue cell apoptosis.

19.
Antioxidants (Basel) ; 11(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139873

RESUMO

This study aims to explore the effects of modified montmorillonite (MMT, copper loading) on the growth performance, gut microbiota, intestinal barrier, antioxidative capacity and immune function of broilers. Yellow-feathered broilers were randomly divided into control (CTR), modified montmorillonite (MMT), and antibiotic (ANTI) groups. Results revealed that MMT supplementation increased the BW and ADG and decreased the F/R during the 63-day experiment period. 16S rRNA sequencing showed that MMT modulated the cecal microbiota composition of broilers by increasing the relative abundance of two phyla (Firmicutes and Bacteroidetes) and two genera (Bacteroides and Faecalibacterium) and decreasing the abundance of genus Olsenella. MMT also improved the intestinal epithelial barrier indicated by the up-regulated mRNA expression of claudin-1, occludin, and ZO-1 and the increased length of microvilli in jejunum and the decreased levels of DAO and D-LA in serum. In addition, MMT enhanced the immune function indicated by the increased levels of immunoglobulins, the decreased levels of MPO and NO, the down-regulated mRNA expression of IL-1ß, IL-6, and TNF-α, and the up-regulated mRNA expression of IL-4 and IL-10. Moreover, MMT down-regulated the expression of jejunal TLRs/MAPK/NF-κB signaling pathway-related genes (TLR2, TLR4, Myd88, TRAF6, NF-κB, and iNOS) and related proteins (TRAF6, p38, ERK, NF-κB, and iNOS). In addition, MMT increased the antioxidant enzyme activities and the expression of Nrf2/HO-1 signaling pathway-related genes and thereby decreased the apoptosis-related genes expression. Spearman's correlation analysis revealed that Bacteroides, Faecalibacterium, and Olsenella were related to the inflammatory index (MPO and NO), oxidative stress (T-AOC, T-SOD, and CAT) and intestinal integrity (D-LA and DAO). Taken together, MMT supplementation improved the growth performance of broilers by modulating intestinal microbiota, enhancing the intestinal barrier function, and improving inflammatory response, which might be mediated by inhibiting the TLRs/MAPK/NF-κB signaling pathway, and antioxidative capacity mediated by the Nrf2/HO-1 signaling pathway.

20.
mBio ; 12(5): e0214821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34634946

RESUMO

Inflammatory bowel disease (IBD) is a type of immune-mediated chronic and relapsing inflammatory gastrointestinal symptoms. IBD cannot be completely cured because of the complex pathogenesis. Glycerol monolaurate (GML), naturally found in breast milk and coconut oil, has excellent antimicrobial, anti-inflammatory, and immunoregulatory functions. Here, the protective effect of GML on dextran sodium sulfate (DSS)-induced mouse colitis and the underlying gut microbiota-dependent mechanism were assessed in C57BL/6 mice pretreated or cotreated with GML and in antibiotic-treated mice transplanted with GML-modulated microbiota. Results showed that GML pretreatment has an advantage over GML cotreatment in alleviating weight loss and reducing disease activity index (DAI), colonic histological scores, and proinflammatory responses. Moreover, the amounts of Lactobacillus and Bifidobacterium and fecal propionic acid and butyric acid were elevated only in mice pretreated with GML upon DSS induction. Of note, fecal microbiota transplantation (FMT) from GML-pretreated mice achieved faster and more significant remission of DSS-induced colitis, manifested as reduced DAI, longer colon, decreased histological scores, and enhanced colonic Foxp3+ regulatory T cells (Tregs) and ratio of serum anti-inflammatory/proinflammatory cytokines, as well as the reconstruction of microbial communities, including elevated Helicobacter ganmani and decreased pathogenic microbes. In conclusion, GML-mediated enhancement of Bifidobacterium and fecal short-chain fatty acids (SCFAs) could be responsible for the anticolitis effect. FMT assay confirmed that gut microbiota modulated by GML was more resistant to DSS-induced colitis via elevating beneficial H. ganmani and establishing Treg tolerant phenotype. Importantly, colitis remission induced by GML is associated with novel gut microbiota patterns, even though different microbial contexts were involved. IMPORTANCE The gut microbiota, which can be highly and dynamically affected by dietary components, is closely related to IBD pathogenesis. Here, we demonstrated that food-grade glycerol monolaurate (GML)-mediated enhancement of Bifidobacterium and fecal SCFAs could be responsible for the anticolitis effect. FMT assay confirmed that gut microbiota modulated by GML was more resistant to DSS-induced colitis via elevating beneficial H. ganmani and establishing Treg tolerant phenotype. Collectively, colitis remission induced by GML is associated with novel gut microbiota patterns, even though different microbial contexts were involved, which further provided a perspective to identify specific microbial members and those responsible for the anticolitis effect, such as Bifidobacterium and Helicobacter.


Assuntos
Anti-Inflamatórios/administração & dosagem , Colite/tratamento farmacológico , Colite/microbiologia , Microbioma Gastrointestinal , Lauratos/administração & dosagem , Monoglicerídeos/administração & dosagem , Sulfatos/efeitos adversos , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Colite/imunologia , Citocinas/genética , Citocinas/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa