Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 181: 308-316, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38570107

RESUMO

Acute lung injury (ALI) represents a critical respiratory condition typified by rapid-onset lung inflammation, contributing to elevated morbidity and mortality rates. Central to ALI pathogenesis lies macrophage dysfunction, characterized by an overabundance of pro-inflammatory cytokines and a shift in metabolic activity towards glycolysis. This study emphasizes the crucial function of glucose metabolism in immune cell function under inflammatory conditions and identifies hexokinase 2 (HK2) as a key regulator of macrophage metabolism and inflammation. Given the limitations of HK2 inhibitors, we propose the CRISPR/Cas9 system for precise HK2 downregulation. We developed an aerosolized core-shell liposomal nanoplatform (CSNs) complexed with CaP for efficient drug loading, targeting lung macrophages. Various CSNs were synthesized to encapsulate an mRNA based CRISPR/Cas9 system (mCas9/gHK2), and their gene editing efficiency and HK2 knockout were examined at both gene and protein levels in vitro and in vivo. The CSN-mCas9/gHK2 treatment demonstrated a significant reduction in glycolysis and inflammation in macrophages. In an LPS-induced ALI mouse model, inhaled CSN-mCas9/gHK2 mitigated the proinflammatory tumor microenvironment and reprogrammed glucose metabolism in the lung, suggesting a promising strategy for ALI prevention and treatment. This study highlights the potential of combining CRISPR/Cas9 gene editing with inhalation delivery systems for effective, localized pulmonary disease treatment, underscoring the importance of targeted gene modulation and metabolic reprogramming in managing ALI. STATEMENT OF SIGNIFICANCE: This study investigates an inhalable CRISPR/Cas9 gene editing system targeting pulmonary macrophages, with the aim of modulating glucose metabolism to alleviate Acute Lung Injury (ALI). The research highlights the role of immune cell metabolism in inflammation, as evidenced by changes in macrophage glucose metabolism and a notable reduction in pulmonary edema and inflammation. Additionally, observed alterations in macrophage polarization and cytokine levels in bronchoalveolar lavage fluid suggest potential therapeutic implications. These findings not only offer insights into possible ALI treatments but also contribute to the understanding of immune cell metabolism in inflammatory diseases, which could be relevant for various inflammatory and metabolic disorders.


Assuntos
Lesão Pulmonar Aguda , Sistemas CRISPR-Cas , Hexoquinase , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Animais , Camundongos , Hexoquinase/genética , Hexoquinase/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Administração por Inalação , Lipossomos/química , Células RAW 264.7 , Masculino , Reprogramação Celular/efeitos dos fármacos , Edição de Genes , Glicólise/efeitos dos fármacos
2.
Int J Biol Macromol ; 222(Pt A): 207-216, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108750

RESUMO

Liquid-liquid phase separation (LLPS) drives the formation of extensive membrane-less compartments to regulate various cellular biological activities both physiologically and pathologically. It has been widely accepted that LLPS is closely related to amyloid diseases and increasing reports have linked this phenomenon to cancers. Mutations of tumor suppressor protein p53 exist in more than half of malignant tumors, making the protein vitally important in cancer research. Recently, p53 was reported to undergo phase separation, which may regulate the function of p53. The molecular mechanism of p53 phase separation and how this process relates to cancer remains largely unclear. Herein, we find that the disordered unstructured basic region (UBR) plays a crucial role in p53 LLPS, driven by electrostatic and hydrophobic interactions. Mutations in the tetramerization domain (TD) disrupt p53 phase separation by preventing the tetramer formation. Furthermore, our results have revealed that, in response to DNA damage in cell, the wild type (WT) p53 undergoes LLPS, while LLPS in oncogenic mutations is diminished or eliminated. The expression of the target gene of p53 decreased significantly with the mutations and cell survival increased with the mutations. Thus, we propose a novel mechanism of p53 carcinogenesis, whereby oncogenic mutations in TD impair the formation of p53 condensates, decreasing the activation of target genes and promoting cancer progression. This study helps to understand the behavior and function of p53 in a different aspect and may provide insights into cancer therapies targeting p53.


Assuntos
Fenômenos Bioquímicos , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Eletricidade Estática , Mutação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa