Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Curr Issues Mol Biol ; 43(3): 2157-2166, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940124

RESUMO

Mesenchymal stromal cells (MSCs) have the potential to differentiate into a variety of mature cell types and are a promising source of regenerative medicine. The success of regenerative medicine using MSCs strongly depends on their differentiation potential. In this study, we sought to identify marker genes for predicting the osteogenic differentiation potential by comparing ilium MSC and fibroblast samples. We measured the mRNA levels of 95 candidate genes in nine ilium MSC and four fibroblast samples before osteogenic induction, and compared them with alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation after induction. We identified 17 genes whose mRNA expression levels positively correlated with ALP activity. The chondrogenic and adipogenic differentiation potentials of jaw MSCs are much lower than those of ilium MSCs, although the osteogenic differentiation potential of jaw MSCs is comparable with that of ilium MSCs. To select markers suitable for predicting the osteogenic differentiation potential, we compared the mRNA levels of the 17 genes in ilium MSCs with those in jaw MSCs. The levels of 7 out of the 17 genes were not substantially different between the jaw and ilium MSCs, while the remaining 10 genes were expressed at significantly lower levels in jaw MSCs than in ilium MSCs. The mRNA levels of the seven similarly expressed genes were also compared with those in fibroblasts, which have little or no osteogenic differentiation potential. Among the seven genes, the mRNA levels of IGF1 and SRGN in all MSCs examined were higher than those in any of the fibroblasts. These results suggest that measuring the mRNA levels of IGF1 and SRGN before osteogenic induction will provide useful information for selecting competent MSCs for regenerative medicine, although the effectiveness of the markers is needed to be confirmed using a large number of MSCs, which have various levels of osteogenic differentiation potential.


Assuntos
Biomarcadores , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Linhagem da Célula/genética , Células Cultivadas , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Medicina Regenerativa
2.
Genes Cells ; 25(4): 232-241, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31991027

RESUMO

Previously, we found that the basic helix-loop-helix transcriptional repressor DEC1 interacts with the PPARγ:RXRα heterodimer, a master transcription factor for adipogenesis and lipogenesis, to suppress transcription from PPARγ target genes (Noshiro et al., Genes to Cells, 2018, 23:658-669). Because the expression of PPARγ and several of its target genes exhibits circadian rhythmicity in white adipose tissue (WAT), we examined the expression profiles of PPARγ target genes in wild-type and Dec1-/- mice. We found that the expression of PPARγ target genes responsible for lipid metabolism, including the synthesis of triacylglycerol from free fatty acids (FFAs), lipid storage and the lipolysis of triacylglycerol to FFAs, oscillates in a circadian manner in WAT. Moreover, DEC1 deficiency led to a marked increase in the expression of these genes at night (Zeitgeber times 16 and 22), resulting in disruption of circadian rhythms. Serum FFA levels in wild-type mice also showed circadian oscillations, but these were disrupted by DEC1 deficiency, leading to reduced FFA levels. These results suggest that PPARγ:RXRα and DEC1 cooperatively generate the circadian expression of PPARγ target genes through PPAR-responsive elements in WAT.


Assuntos
Tecido Adiposo Branco/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/genética , Proteínas de Homeodomínio/metabolismo , Metabolismo dos Lipídeos , PPAR gama/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Ácidos Graxos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768959

RESUMO

Lung cancer constitutes a threat to human health. BHLHE41 plays important roles in circadian rhythm and cell differentiation as a negative regulatory transcription factor. This study investigates the role of BHLHE41 in lung cancer progression. We analyzed BHLHE41 function via in silico and immunohistochemical studies of 177 surgically resected non-small cell lung cancer (NSCLC) samples and 18 early lung squamous cell carcinoma (LUSC) cases. We also examined doxycycline (DOX)-inducible BHLHE41-expressing A549 and H2030 adenocarcinoma cells. BHLHE41 expression was higher in normal lung than in lung adenocarcinoma (LUAD) tissues and was associated with better prognosis for the overall survival (OS) of patients. In total, 15 of 132 LUAD tissues expressed BHLHE41 in normal lung epithelial cells. Staining was mainly observed in adenocarcinoma in situ and the lepidic growth part of invasive cancer tissue. BHLHE41 expression constituted a favorable prognostic factor for OS (p = 0.049) and cause-specific survival (p = 0.042) in patients with LUAD. During early LUSC, 7 of 18 cases expressed BHLHE41, and this expression was inversely correlated with the depth of invasion. DOX suppressed cell proliferation and increased the autophagy protein LC3, while chloroquine enhanced LC3 accumulation and suppressed cell death. In a xenograft model, DOX suppressed tumor growth. Our results indicate that BHLHE41 expression prevents early lung tumor malignant progression by inducing autophagic cell death in NSCLC.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Células A549 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Doxiciclina/farmacologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Genes Cells ; 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968353

RESUMO

Obesity is a major public health problem in developed countries resulting from increased food intake and decreased energy consumption and usually associated with abnormal lipid metabolism. Here, we show that DEC1, a basic helix-loop-helix transcription factor, plays an important role in the regulation of lipid consumption in mouse brown adipose tissue (BAT), which is the major site of thermogenesis. Homozygous Dec1 deletion attenuated high-fat-diet-induced obesity, adipocyte hypertrophy, fat volume and hepatic steatosis. Furthermore, DEC1 deficiency increased body temperature during daytime and enhanced the expression of uncoupler protein 1, a key factor of thermogenesis, and various lipolysis-related genes in interscapular BAT. In vitro experiments suggested that DEC1 suppresses the expression of various lipolysis-related genes induced by the heterodimer of peroxisome proliferator-activated receptor γ and retinoid X receptor α (RXRα) through direct binding to RXRα. These observations suggest that enhanced lipolysis in BAT caused by DEC1 deficiency leads to an increase in lipid consumption, thereby decreasing lipid accumulation in adipose tissues and the liver. Thus, DEC1 may serve as an energy-saving factor that suppresses lipid consumption, which may be relevant to managing obesity.

5.
PLoS Biol ; 12(4): e1001839, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24736997

RESUMO

Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1-CLOCK activity in a histone deacetylase (HDAC) -dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO) mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Criptocromos/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/biossíntese , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Criptocromos/genética , Histona Desacetilases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Alinhamento de Sequência , Transcrição Gênica/genética
6.
Genes Cells ; 17(2): 109-21, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22244086

RESUMO

DEC1 and DEC2, members of the basic helix-loop-helix superfamily, are involved in various biological phenomena including clock systems, cell differentiation and metabolism. In clock systems, Dec1 and Dec2 expression are up-regulated by the CLOCK:BMAL1 heterodimer via E-box (CACGTG), exhibiting a circadian rhythm in the suprachiasmatic nucleus (SCN), the central circadian pacemaker and other peripheral tissues. In this study, using assays of luciferase reporters, electrophoretic mobility shift and chromatin immunoprecipitation, we identified novel nuclear receptor response elements, ROR response elements (RORE), in Dec1 and Dec2 promoters. These ROREs responded to the transcriptional activator RORα, but not to the repressor REVERBα, although the Bmal1 promoter responded to both RORα and REVERBα. Therefore, RORα, but not REVERBα, is involved in the regulation of Dec1 and Dec2 expression without significantly affecting their rhythmicity. Since RORα, DEC1 and DEC2 reportedly suppressed adipogenic differentiation, we examined expression of Rorα, Dec1, Dec2 and other clock-controlled genes in differentiating 3T3-L1 adipocytes. The results suggested that RORα suppresses adipogenic differentiation at a later stage of differentiation by RORE-mediated stimulation of Dec1 and Dec2 expression.


Assuntos
Adipogenia/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição ARNTL/genética , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Ordem dos Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Elementos de Resposta
7.
Mol Pharmacol ; 81(5): 739-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22355045

RESUMO

Differentiated embryo chondrocyte-2 (DEC2), also known as bHLHE41 or Sharp1, is a pleiotropic transcription repressor that controls the expression of genes involved in cellular differentiation, hypoxia responses, apoptosis, and circadian rhythm regulation. Although a previous study demonstrated that DEC2 participates in the circadian control of hepatic metabolism by regulating the expression of cytochrome P450, the molecular mechanism is not fully understood. We reported previously that brief exposure of HepG2 cells to 50% serum resulted in 24-h oscillation in the expression of CYP3A4 as well as circadian clock genes. In this study, we found that the expression of CYP2D6, a major drug-metabolizing enzyme in humans, also exhibited a significant oscillation in serum-shocked HepG2 cells. DEC2 interacted with CCAAT/enhancer-binding protein (C/EBPα), accompanied by formation of a complex with histone deacetylase-1, which suppressed the transcriptional activity of C/EBPα to induce the expression of CYP2D6. The oscillation in the protein levels of DEC2 in serum-shocked HepG2 cells was nearly antiphase to that in the mRNA levels of CYP2D6. Transfection of cells with small interfering RNA against DEC2 decreased the amplitude of CYP2D6 mRNA oscillation in serum-shocked cells. These results suggest that DEC2 periodically represses the promoter activity of CYP2D6, resulting in its circadian expression in serum-shocked cells. DEC2 seems to constitute a molecular link through which output components from the circadian clock are associated with the time-dependent expression of hepatic drug-metabolizing enzyme.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Ritmo Circadiano , Citocromo P-450 CYP2D6/genética , Proteínas CLOCK/fisiologia , Células Hep G2 , Fator 4 Nuclear de Hepatócito/fisiologia , Humanos , RNA Mensageiro/análise , Soro , Fatores de Tempo
8.
J Cell Biochem ; 113(10): 3246-53, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22644784

RESUMO

Growing evidence indicates that inflammation is a contributing factor leading to cancer development. However, pathways involved in this progression are not well understood. The involvement of DEC1 in cancer prompted us to examine whether pro-inflammatory cytokine interleukin-1ß (IL-1ß) induces the expression of DEC1 in oral inflammation. We found that IL-1ß up-regulated DEC1 and hypoxia-inducible factor-1α (HIF-1α) protein and elevated the HIF-1α-responsive gene vascular endothelial growth factor (VEGF) expression in human primary gingival cells. HIF-1α and DEC1 immunoreactivity were significantly higher in the cases of gingival inflammation. We demonstrate that IL-1ß up-regulates DEC1 and HIF-1α protein through a classical inflammatory signaling pathway involving Akt. Our data strongly suggest that PI-3K-Akt is an upstream participant in IL-1ß-mediated DEC1 and HIF-1α induction. This is supported by the following data: (1) IL-1ß induces 473 serine phosphorylation of Akt; (2) IL-1ß-mediated Akt activation occurs in a PI-3K-dependent manner, and specific inhibition of PI-3K prevents Akt phosphorylation; and (3) inhibition of Akt prevents IL-1ß-mediated DEC1 and HIF-1α induction. Taken together, these results suggest that DEC1 is one of the important transcription factors in inflammation.


Assuntos
Gengiva/patologia , Interleucina-1beta/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Western Blotting , Células Cultivadas , Cromonas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Masculino , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Porphyromonas gingivalis/patogenicidade , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Serina/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Biochem Biophys Res Commun ; 419(2): 441-6, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22382019

RESUMO

Smads are intracellular signaling mediators. Complexes of Smad2 and Smad3 with Smad4 transmit transforming growth factor-beta (TGF-ß) receptor-induced signaling. Snail plays important roles in mesoderm formation, gastrulation, neural crest development, and epithelial mesenchymal transition. However, it remains unknown whether Smad3 and Snail expression is circadian rhythm-dependent. Here, we showed for the first time that Smad3 and Snail show circadian expression in human gingival fibroblasts (HGF-1) and human mesenchymal stem cells (MSC) after serum shock. They also showed circadian expression in the mouse liver. We confirmed that BMAL1/2, DEC1/2, VEGF, and PER1/2/3 also show circadian expression in both HGF-1 and MSC. The mRNA peaks and phases in circadian expression of these genes differed between HGF-1 and MSC. In a luciferase assay, Smad3 promoter activity was upregulated by CLOCK/BMAL1. These findings suggest that Smad3 and Snail have circadian rhythm in vitro and vivo, and that circadian expression of Smad3 depends on CLOCK/BMAL1.


Assuntos
Ritmo Circadiano , Fibroblastos/metabolismo , Gengiva/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Smad3/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Transcrição ARNTL/biossíntese , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Proteínas CLOCK/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos , Proteínas Circadianas Period/biossíntese , Fatores de Transcrição da Família Snail , Proteínas Supressoras de Tumor/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese
10.
J Pathol ; 224(3): 420-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21506129

RESUMO

DEC1 (also known as Stra13/Bhlhb2/Sharp2) and DEC2 (also known as Bhlhb3/Sharp1) are two paralogous basic helix-loop-helix (bHLH) transcriptional regulators which exhibit a robust circadian gene expression pattern in the suprachiasmatic nucleus (SCN) and in peripheral organs. DEC1 has been suggested to play key roles in mammalian cell differentiation, the cell cycle and circadian regulation, hypoxia response, and carcinogenesis. Here we show that DEC1 overexpression exhibits delayed wound healing and reduces cell proliferation, migration, and invasion. DEC1 strongly repressed the promoter activity of cyclin D1. We further identify a possible DEC-response element in the cyclin D1 promoter region, and confirmed the direct binding of DEC1 to that element. Forced expression of DEC1 efficiently repressed the cyclin D1 promoter and expression. Our clinical data provide the first evidence that there is a strong inverse correlation between DEC1 and cyclin D1 expression in oral cancer, and DEC1 expression significantly correlated with clinicopathological parameters. We suggest that radiation-induced DEC1 overexpression and Akt phosphorylation in cancer cells are mediated via PI-3K signalling. Overexpression of DEC1 activates the PI-3K/Akt signalling pathway through reactive oxygen species (ROS).


Assuntos
Carcinoma de Células Escamosas/metabolismo , Ciclina D1/metabolismo , Neoplasias Bucais/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Ciclo Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células , Dano ao DNA , DNA de Neoplasias/genética , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Invasividade Neoplásica , Proteínas de Neoplasias/fisiologia , Estadiamento de Neoplasias , Transplante de Neoplasias , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
11.
Clin Cosmet Investig Dent ; 14: 71-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355803

RESUMO

Background: Periodontitis progression is characterized by alveolar bone loss, and its prevention is a major clinical problem in periodontal disease management. Matrix metalloproteinase-8 (MMP-8) has been shown to adequately monitor the treatment of chronic periodontitis patients as gingival crevicular fluid MMP-8s were positively associated with the severity of periodontal disease. Moreover, modulating the vascular endothelial growth factor (VEGF) levels in bones could be a good way to improve bone regeneration and cure periodontitis as VEGF promotes endothelial cell proliferation, proteolytic enzyme release, chemotaxis, and migration; all of which are required for angiogenesis. Purpose: The aim of this study was to determine the effect of hydroxyapatite incorporated with stem cells from exfoliated deciduous teeth (SHED) in Wistar rats' initial alveolar bone remodeling based on the findings of MMP-8 and VEGF expressions. Methods: A hydroxyapatite scaffold (HAS) in conjunction with SHED was transplanted into animal models with alveolar mandibular defects. A total of 10 Wistar rats (Rattus norvegicus) were divided into two groups: HAS and HAS + SHED. Immunohistochemistry staining was performed after 7 days to facilitate the examination of MMP-8 and VEGF expressions. Results: The independent t-test found significant downregulation of MMP-8 and upregulation VEGF expressions in groups transplanted with HAS in conjunction with SHED compared with the HAS group (p < 0.05). Conclusion: The combination of SHED with HAS on alveolar bone defects may contribute to initial alveolar bone remodeling as evident through the assessments of MMP-8 and VEGF expressions.

12.
Genes Cells ; 15(4): 315-25, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20236182

RESUMO

DEC1 (BHLHB2/Stra13/Sharp2) and DEC2 (BHLHB3/Sharp1) are basic helix-loop-helix (bHLH) transcription factors that are involved in circadian rhythms, differentiation and the responses to hypoxia. We examined whether DEC1 and DEC2 are involved in apoptosis regulation, in human breast cancer MCF-7 cells. We found that siRNA-mediated knockdown of DEC2 resulted in marked enhancement of apoptosis compared with that in control cells transfected with nonspecific siRNA. However, knockdown of DEC1 by siRNA did not affect cell survival. Knockdown of DEC2 affected the expression of mRNA or proteins related to apoptosis, such as Fas, c-Myc, caspase-8, poly (ADP-ribose) polymerase (PARP) and Bax. We also showed that tumor necrosis factor-alpha (TNF-alpha) up-regulates the expression of DEC1 and DEC2. DEC2 over-expression caused by the transfection of an expression vector reduced the amounts of cleaved PARP and caspase-8 induced by TNF-alpha treatment, whereas DEC1 over-expression increased it. Finally, we revealed that treatment with double knockdown against both DEC1 and DEC2 decreased the amounts of cleaved PARP and caspase-8 induced by DEC2 siRNA with or without TNF-alpha. These data indicate that DEC2 has an anti-apoptotic effect, whereas DEC1 has a pro-apoptotic effect, which are involved in the balance of survival of human breast cancer MCF-7 cells.


Assuntos
Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/genética , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Feminino , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/fisiologia , Transfecção , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/genética
13.
Sci Rep ; 11(1): 19240, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584158

RESUMO

Clock genes Cry1 and Cry2, inhibitory components of core molecular feedback loop, are regarded as critical molecules for the circadian rhythm generation in mammals. A double knockout of Cry1 and Cry2 abolishes the circadian behavioral rhythm in adult mice under constant darkness. However, robust circadian rhythms in PER2::LUC expression are detected in the cultured suprachiasmatic nucleus (SCN) of Cry1/Cry2 deficient neonatal mice and restored in adult SCN by co-culture with wild-type neonatal SCN. These findings led us to postulate the compensatory molecule(s) for Cry1/Cry2 deficiency in circadian rhythm generation. We examined the roles of Chrono and Dec1/Dec2 proteins, the suppressors of Per(s) transcription similar to CRY(s). Unexpectedly, knockout of Chrono or Dec1/Dec2 in the Cry1/Cry2 deficient mice did not abolish but decoupled the coherent circadian rhythm into three different periodicities or significantly shortened the circadian period in neonatal SCN. DNA microarray analysis for the SCN of Cry1/Cry2 deficient mice revealed substantial increases in Per(s), Chrono and Dec(s) expression, indicating disinhibition of the transactivation by BMAL1/CLOCK. Here, we conclude that Chrono and Dec1/Dec2 do not compensate for absence of CRY1/CRY2 in the circadian rhythm generation but contribute to the coherent circadian rhythm expression in the neonatal mouse SCN most likely through integration of cellular circadian rhythms.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Repressoras/metabolismo , Núcleo Supraquiasmático/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Recém-Nascidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Criptocromos/genética , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Fatores de Transcrição/genética
14.
Genes Cells ; 14(1): 29-40, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19032342

RESUMO

DEC1 (BHLHB2/Stra13/Sharp2)-a basic helix-loop-helix transcription factor-is known to be involved in various biological phenomena including clock systems and metabolism. In the clock systems, Dec1 expression is dominantly up-regulated by CLOCK : BMAL1 heterodimer, and it exhibits circadian rhythm in the suprachiasmatic nucleus (SCN)-the central circadian pacemaker-and other peripheral tissues. Recent studies have shown that the strong circadian rhythmicity of Dec1 in the SCN was abolished by Clock mutation, whereas that in the liver was affected, but not abolished, by Clock mutation. Moreover, feeding conditions affected hepatic Dec1 expression, which indicates that Dec1 expression is closely linked with the metabolic functions of the liver. Among ligand-activated nuclear receptors examined, LXRalpha and LXRbeta with T0901317-agonist for LXR-were found to be potent enhancers for Dec1 promoter activity, and a higher expression level of LXRalpha protein was detected in the liver than in the kidney and heart. T0901317 increased the levels of endogenous Dec1 transcript in hepatoma cells. Chromatin immunoprecipitation assay indicated that LXRalpha bound to the Dec1 promoter, and an LXRalpha-binding site was identified. These observations indicate that hepatic DEC1 mediates the ligand-dependent LXR signal to regulate the expression of genes involved in the hepatic clock system and metabolism.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Proteínas CLOCK , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Dimerização , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Receptores X do Fígado , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Células NIH 3T3 , Especificidade de Órgãos/genética , Receptores Nucleares Órfãos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Elementos de Resposta/genética , Transativadores/metabolismo
15.
Mol Pharmacol ; 76(6): 1360-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19786558

RESUMO

The basic helix-loop-helix proteins differentiated embryo chondrocyte 1 (DEC1) and DEC2 are involved in circadian rhythm control. Because the metabolism of dietary nutrients has been linked to circadian regulation, we examined the effect of DEC1 and DEC2 on the function of the metabolite-sensing nuclear receptors, ligand-dependent transcription factors, including retinoid X receptor (RXR) and liver X receptor (LXR). Transfection assays showed that DEC1 and DEC2 repressed ligand-dependent transactivation by RXR. Knockdown of endogenous DEC1 and DEC2 expression with small interfering RNAs augmented ligand-dependent RXRalpha transactivation. DEC1 and DEC2 interacted directly with RXRalpha, and ligand addition enhanced their association. DEC1 and DEC2 modified interaction of RXRalpha with cofactor proteins. Transfection assays using DEC1 and DEC2 mutants revealed that the C-terminal region of DEC2 is required for repression and that an LXXLL motif in DEC1 and DEC2 is necessary for RXRalpha repression. DEC1 and DEC2 repressed the induction of LXR target genes, associated with the promoter of an LXR target gene, and dissociated from the promoter with ligand treatment. Knockdown of endogenous DEC1 and DEC2 enhanced the LXR target gene expression in hepatocytes. Expression of Dec1, Dec2, and Srebp-1c showed a circadian rhythm in the liver of mice, whereas that of Lxralpha, Lxrbeta, and Rxralpha was not rhythmic. DEC1 and DEC2 also repressed the transactivation of other RXR heterodimers, such as farnesoid X receptor, vitamin D receptor, and retinoic acid receptor. Thus, the repressor function of DEC1 and DEC2 may be extended to other RXR heterodimer nuclear receptors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Condrócitos/fisiologia , Receptores X de Retinoides/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Linhagem Celular , Regulação para Baixo , Glutationa Transferase/biossíntese , Histona Desacetilases/fisiologia , Proteínas de Homeodomínio/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor X Retinoide alfa/biossíntese , Receptor X Retinoide alfa/fisiologia , Receptores X de Retinoides/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/fisiologia , Ativação Transcricional/fisiologia , Transfecção
16.
Genes Cells ; 13(2): 131-44, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18233956

RESUMO

DEC1 (BHLHB2/Sharp2/Stra13) and DEC2 (BHLHB3/Sharp1) are basic-helix-loop-helix (bHLH) transcription factors, involved in cellular differentiation, responses to hypoxia and circadian rhythms. We recently showed that the expression of DEC1 and DEC2 was up-regulated by hypoxia; however, the functions of these two factors under hypoxic conditions have not been elucidated in detail. It is well established that the expression of vascular endothelial growth factor (VEGF) is up-regulated by hypoxia, and the expression of VEGF in response to hypoxia depends on transcriptional activation by a heterodimer comprising hypoxia-inducible factor 1alpha (HIF-1alpha) and arylhydrocarbon receptor nuclear translocator 1 (ARNT1). In the present study, we showed that DEC2, but not DEC1, suppressed VEGF gene expression under hypoxic conditions. DEC2 protein was co-immunoprecipitated with HIF-1alpha but not with ARNT1. The binding of HIF-1alpha to the hypoxia response element (HRE) in the VEGF promoter was decreased by DEC2 over-expression, and increased by DEC2 knockdown. We also showed that the circadian expression of VEGF showed a reciprocal pattern to that of DEC2 in cartilage. DEC2 had a circadian oscillation in implanted Sarcoma 180 cells. We conclude that DEC2 negatively regulates VEGF expression and plays an important role in the pathological conditions in which VEGF is involved.


Assuntos
Hipóxia Celular/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Plasmídeos/genética , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sarcoma 180/genética , Sarcoma 180/metabolismo , Fatores de Transcrição/genética , Transfecção
17.
J Pharm Pharmacol ; 60(6): 747-52, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18498711

RESUMO

Histamine H1 receptor (H1R) levels vary under various pathological conditions, and these changes may be responsible for some pathogenesis such as in allergic rhinitis. Several stimulants, including histamine, muscarinic agonists and platelet-activating factor, have now been shown to regulate H1R levels and may have roles in regulating the H1R level in physiological and pathological conditions. Results for beta2-adrenoceptor (beta2AR) stimulation are conflicting, however.beta2AR up-regulated H1R in bovine tracheal smooth muscle, but down-regulated human H1R expressed in Chinese hamster ovary (CHO) cells. It is possible that this discrepancy comes from the differences in the preparations used for each study: the former cell expressed bovine H1R and the latter cell expressed human H1R. Moreover, CHO cells have been shown to be inadequate for studying the effects on H1R gene expression, because the cells express non-endogenous stably transfected H1R under the control of the SV40 promoter. Therefore, in this study, we have investigated the role of beta2AR stimulation in H1R gene regulation using human U373 astrocytoma cells that express endogenous H1R and transfected beta2AR. Stimulation of beta2AR significantly reduced H1R promoter activity and H1R mRNA levels. H1R mRNA stability was slightly reduced by beta2AR stimulation, although this was not significant. The decrease of H1R mRNA by beta2AR stimulation was blocked by the protein kinase A (PKA) inhibitor KT5720, suggesting the involvement of PKA. These results indicate that the beta2AR is involved in the down-regulation of human H1R by inhibiting H1R gene transcription through a PKA-dependent process.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Agonistas Adrenérgicos beta/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Histamínicos H1/metabolismo , Astrocitoma/metabolismo , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proteínas Quinases Dependentes de AMP Cíclico/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fenoterol/farmacologia , Humanos , Regiões Promotoras Genéticas , Pirróis/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores Histamínicos H1/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
18.
J Biol Rhythms ; 22(4): 299-311, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17660447

RESUMO

Cholesterol 7alpha-hydroxylase (CYP7A) and sterol 12alpha-hydroxylase (CYP8B) in bile acid biosynthesis and 3-hydroxyl-3-methylglutaryl CoA reductase (HMGCR) in cholesterol biosynthesis are the key enzymes in hepatic metabolic pathways, and their transcripts exhibit circadian expression profiles in rodent liver. The authors determined transcript levels of these enzymes and the regulatory factors for Cyp7a--including Dbp, Dec2, E4bp4, Hnf4alpha, Pparalpha, Lxralpha, Rev-erbalpha, and Rev-erbbeta--in the liver of wild-type and homozygous Clock mutant mice (Clock/Clock) and examined the effects of these transcription factors on the transcription activities of Cyp7a. The expression profile of the Cyp7a transcript in wild-type mice showed a strong circadian rhythm in both the 12L:12D light-dark cycle and constant darkness, and that in Clock/Clock also exhibited a circadian rhythm at an enhanced level with a lower amplitude, although its protein level became arrhythmic at a high level. The expression profile of Cyp8b mRNA in wild-type mice showed a shifted circadian rhythm from that of Cyp7a, becoming arrhythmic in Clock/Clock at an expression level comparable to that of wild-type mice. The expression profile of Hmgcr mRNA also lost its strong circadian rhythm in Clock/Clock , showing an expression level comparable to that of wild-type mice. The expressions of Dbp, Dec2, Rev-erbalpha, and Rev-erb beta--potent regulators for Cyp7a expression--were abolished or became arrhythmic in Clock/Clock, while other regulators for Cyp7a-Lxralpha, Hnf4alpha, Pparalpha, and E4bp4--had either less affected or enhanced expression in Clock/Clock. In luciferase reporter assays, REV-ERBalpha/beta, DBP, LXRalpha, and HNF4alpha increased the promoter activity of Cyp7a, whereas DEC2 abolished the transcription from the Cyp7a promoter: E4BP4 and PPARalpha were moderate negative regulators. Furthermore, knockdown of REV-ERBalpha/beta with siRNA suppressed Cyp7a transcript levels, and in the electrophoretic mobility shift assay, REV-ERBalpha/beta bound to the promoter of Cyp7a . These observations suggest that (1) active CLOCK is essential for the robust circadian expression of hepatic metabolic enzymes (Cyp7a, Cyp8b, and Hmgcr); (2) clock-controlled genes--DBP, DEC2, and REV-ERBalpha/beta--are direct regulators required for the robust circadian rhythm of Cyp7a; and (3) the circadian rhythm of Cyp7a is regulated by multiple transcription factors, including DBP, REV-ERBalpha/beta, LXRalpha, HNF4alpha DEC2, E4BP4, and PPARalpha.


Assuntos
Ácidos e Sais Biliares/biossíntese , Colesterol 7-alfa-Hidroxilase/metabolismo , Ritmo Circadiano/fisiologia , Regulação Enzimológica da Expressão Gênica , Fígado/metabolismo , Animais , Colesterol 7-alfa-Hidroxilase/genética , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Genes Reporter , Luciferases/metabolismo , Camundongos , Camundongos Mutantes , Modelos Biológicos , Regiões Promotoras Genéticas , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional
19.
Stem Cells Int ; 2018: 9530932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405725

RESUMO

The precise predictions of the differentiation direction and potential of mesenchymal stromal cells (MSCs) are an important key to the success of regenerative medicine. The expression levels of fate-determining genes may provide tools for predicting differentiation potential. The expression levels of 95 candidate marker genes and glycosaminoglycan (GAG) contents after chondrogenic induction in 10 undifferentiated ilium and 5 jaw MSC cultures were determined, and their correlations were analyzed. The expression levels of eight genes before the induction of chondrogenic MSC differentiation were significantly correlated with the GAG levels after induction. Based on correlation patterns, the eight genes were classified into two groups: group 1 genes (AURKB, E2F1, CDKN2D, LIF, and ACLY), related to cell cycle regulation, and group 2 genes (CD74, EFEMP1, and TGM2), involved in chondrogenesis. The expression levels of the group 2 genes were significantly correlated with the ages of the cell donors. The expression levels of CDKN2D, CD74, and TGM2 were >10-fold higher in highly potent MSCs (ilium MSCs) than in MSCs with limited potential (jaw MSCs). Three-dimensional (3D) scatter plot analyses of the expression levels of these genes showed reduced variability between donors and confirmed predictive potential. These data suggest that group 2 genes are involved in age-dependent decreases in the chondrogenic differentiation potential of MSCs, and combined 3D analyses of the expression profiles of three genes, including two group 2 genes, were predictive of MSC differentiation potential.

20.
Biomed Rep ; 8(4): 350-358, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29556382

RESUMO

Dental pulp cells (DPCs) are promising candidates for use as transplantable cells in regenerative medicine. However, ex vivo expansion of these cells typically requires culture media containing fetal bovine serum, which may cause infection and immunological reaction following transplantation. In addition, the proliferation and differentiation of DPCs markedly depend upon serum batches. Therefore, the present study examined whether DPCs could be expanded under serum-free conditions. DPCs obtained from four donors were identified to proliferate actively in the serum-free medium, STK2, when compared with those cells in control medium (Dulbecco's modified Eagle's medium containing 10% serum). The high proliferative potential with STK2 was maintained through multiple successive culture passages. DNA microarray analyses demonstrated that the gene expression profile of DPCs grown in STK2 was similar to that of cells grown in the control medium; however, a number of genes related to cell proliferation, including placental growth factor and inhibin-ßE, were upregulated in the STK2 cultures. Following induction of osteogenesis, DPCs grown in STK2 induced alkaline phosphatase activity and calcification at higher levels compared with the control medium cultures, indicating maintenance of differentiation potential in STK2. This serum-free culture system with DPCs may have applications in further experimental studies and as a clinical strategy in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa