Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 153(6): 1563-1573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423369

RESUMO

BACKGROUND: Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE: Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS: Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS: In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION: Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.


Assuntos
Microbiota , Fenótipo , Sons Respiratórios , População Urbana , Humanos , Lactente , Pré-Escolar , Masculino , Feminino , Estudos Longitudinais , Asma/microbiologia , Asma/epidemiologia , Poeira/análise , Poeira/imunologia , Exposição Ambiental , Nariz/microbiologia , RNA Ribossômico 16S/genética , Criança
2.
Allergy ; 77(12): 3617-3628, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35841380

RESUMO

BACKGROUND: The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS: We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS: Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS: Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.


Assuntos
Asma , Microbiota , Humanos , Lactente , Recém-Nascido , Gravidez , Feminino , Pré-Escolar , Interleucina-13 , RNA Ribossômico 16S , Sistema Respiratório , Microbiota/genética
3.
Am J Respir Crit Care Med ; 199(1): 71-82, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30079758

RESUMO

RATIONALE: Characterization of patterns of wheezing and allergic sensitization in early life may allow for identification of specific environmental exposures impacting asthma development. OBJECTIVES: To define respiratory phenotypes in inner-city children and their associations with early-life environmental exposures. METHODS: Data were collected prospectively from 442 children in the URECA (Urban Environment and Childhood Asthma) birth cohort through age 7 years, reflecting symptoms (wheezing), aeroallergen sensitization, pulmonary function, and body mass index. Latent class mixed models identified trajectories of wheezing, allergic sensitization, and pulmonary function. Cluster analysis defined nonoverlapping groups (termed phenotypes). Potential associations between phenotypes and early-life environmental exposures were examined. MEASUREMENTS AND MAIN RESULTS: Five phenotypes were identified and mainly differentiated by patterns of wheezing and allergic sensitization (low wheeze/low atopy; low wheeze/high atopy; transient wheeze/low atopy; high wheeze/low atopy; high wheeze/high atopy). Asthma was most often present in the high-wheeze phenotypes, with greatest respiratory morbidity among children with frequent wheezing and allergic sensitization. These phenotypes differentially related to early-life exposures, including maternal stress and depression, antenatal environmental tobacco smoke, house dust microbiome, and allergen content (all P < 0.05). Prenatal smoke exposure, maternal stress, and depression were highest in the high-wheeze/low-atopy phenotype. The high-wheeze/high-atopy phenotype was associated with low household microbial richness and diversity. Early-life aeroallergen exposure was low in high-wheeze phenotypes. CONCLUSIONS: Patterns of wheezing, allergic sensitization, and lung function identified five respiratory phenotypes among inner-city children. Early-life environmental exposure to stress, depression, tobacco smoke, and indoor allergens and microbes differentially associate with specific phenotypes.


Assuntos
Doenças Respiratórias/epidemiologia , População Urbana/estatística & dados numéricos , Asma/epidemiologia , Asma/etiologia , Criança , Pré-Escolar , Análise por Conglomerados , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Hipersensibilidade Imediata/epidemiologia , Hipersensibilidade Imediata/etiologia , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Fenótipo , Estudos Prospectivos , Testes de Função Respiratória , Sons Respiratórios/etiologia , Doenças Respiratórias/etiologia , Fatores de Risco , Testes Cutâneos , Inquéritos e Questionários
4.
J Allergy Clin Immunol ; 144(5): 1187-1197, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31201890

RESUMO

BACKGROUND: In infants, distinct nasopharyngeal bacterial microbiotas differentially associate with the incidence and severity of acute respiratory tract infection and childhood asthma development. OBJECTIVE: We hypothesized that distinct nasal airway microbiota structures also exist in children with asthma and relate to clinical outcomes. METHODS: Nasal secretion samples (n = 3122) collected after randomization during the fall season from children with asthma (6-17 years, n = 413) enrolled in a trial of omalizumab (anti-IgE) underwent 16S rRNA profiling. Statistical analyses with exacerbation as the primary outcome and rhinovirus infection and respiratory illnesses as secondary outcomes were performed. Using A549 epithelial cells, we assessed nasal isolates of Moraxella, Staphylococcus, and Corynebacterium species for their capacity to induce epithelial damage and inflammatory responses. RESULTS: Six nasal airway microbiota assemblages, each dominated by Moraxella, Staphylococcus, Corynebacterium, Streptococcus, Alloiococcus, or Haemophilus species, were observed. Moraxella and Staphylococcus species-dominated microbiotas were most frequently detected and exhibited temporal stability. Nasal microbiotas dominated by Moraxella species were associated with increased exacerbation risk and eosinophil activation. Staphylococcus or Corynebacterium species-dominated microbiotas were associated with reduced respiratory illness and exacerbation events, whereas Streptococcus species-dominated assemblages increased the risk of rhinovirus infection. Nasal microbiota composition remained relatively stable despite viral infection or exacerbation; only a few taxa belonging to the dominant genera exhibited relative abundance fluctuations during these events. In vitro, Moraxella catarrhalis induced significantly greater epithelial damage and inflammatory cytokine expression (IL-33 and IL-8) compared with other dominant nasal bacterial isolates tested. CONCLUSION: Distinct nasal airway microbiotas of children with asthma relate to the likelihood of exacerbation, rhinovirus infection, and respiratory illnesses during the fall season.


Assuntos
Asma/microbiologia , Eosinófilos/imunologia , Microbiota/genética , Mucosa Nasal/microbiologia , RNA Ribossômico 16S/análise , Sistema Respiratório/patologia , Infecções Respiratórias/microbiologia , Células A549 , Adolescente , Asma/imunologia , Morte Celular , Criança , Progressão da Doença , Feminino , Humanos , Lactente , Inflamação , Masculino , Mucosa Nasal/imunologia , Infecções Respiratórias/imunologia
5.
J Allergy Clin Immunol ; 141(4): 1468-1475, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28939248

RESUMO

BACKGROUND: Environmental exposures in early life appear to play an important role in the pathogenesis of childhood asthma, but the potentially modifiable exposures that lead to asthma remain uncertain. OBJECTIVE: We sought to identify early-life environmental risk factors for childhood asthma in a birth cohort of high-risk inner-city children. METHODS: We examined the relationship of prenatal and early-life environmental factors to the occurrence of asthma at 7 years of age among 442 children. RESULTS: Higher house dust concentrations of cockroach, mouse, and cat allergens in the first 3 years of life were associated with lower risk of asthma (for cockroach allergen: odds ratio per interquartile range increase in concentration, 0.55; 95% CI, 0.36-0.86; P < .01). House dust microbiome analysis using 16S ribosomal RNA sequencing identified 202 and 171 bacterial taxa that were significantly (false discovery rate < 0.05) more or less abundant, respectively, in the homes of children with asthma. A majority of these bacteria were significantly correlated with 1 of more allergen concentrations. Other factors associated significantly positively with asthma included umbilical cord plasma cotinine concentration (odds ratio per geometric SD increase in concentration, 1.76; 95% CI, 1.00-3.09; P = .048) and maternal stress and depression scores. CONCLUSION: Among high-risk inner-city children, higher indoor levels of pet or pest allergens in infancy were associated with lower risk of asthma. The abundance of a number of bacterial taxa in house dust was associated with increased or decreased asthma risk. Prenatal tobacco smoke exposure and higher maternal stress and depression scores in early life were associated with increased asthma risk.


Assuntos
Alérgenos/imunologia , Asma/etiologia , Asma/imunologia , Adolescente , Poluição do Ar em Ambientes Fechados/efeitos adversos , Animais , Gatos , Criança , Baratas/imunologia , Estudos de Coortes , Poeira/imunologia , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Masculino , Camundongos , Ácaros/imunologia , Gravidez , Fatores de Risco , Meio Social , População Urbana
6.
J Pediatr Gastroenterol Nutr ; 65(3): e60-e67, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28827481

RESUMO

BACKGROUND AND OBJECTIVES: Breast milk is a complex bioactive fluid that varies across numerous maternal and environmental conditions. Although breast-feeding is known to affect neonatal gut microbiome, the milk components responsible for this effect are not well-characterized. Given the wide range of immunological activity breast milk cytokines engage in, we investigated 3 essential breast milk cytokines and their association with early life gut microbiota. METHODS: A total of 52 maternal-child pairs were drawn from a racially diverse birth cohort based in Detroit, Michigan. Breast milk and neonatal stool specimens were collected at 1-month postpartum. Breast milk transforming growth factor (TGF)ß1, TGFß2, and IL-10 were assayed using enzyme-linked immunosorbent assays, whereas neonatal gut microbiome was profiled using 16S rRNA sequencing. RESULTS: Individually, immunomodulators TGFß1 and TGFß2 were significantly associated with neonatal gut microbial composition (R = 0.024, P = 0.041; R = 0.026, P = 0.012, respectively) and increased richness, evenness, and diversity, but IL-10 was not. The effects of TGFß1 and TGFß2, however, were not independent of one another, and the effect of TGFß2 was stronger than that of TGFß1. Higher levels of TGFß2 were associated with the increased relative abundance of several bacteria, including members of Streptococcaceae and Ruminococcaceae, and lower relative abundance of distinct Staphylococcaceae taxa. CONCLUSIONS: Breast milk TGFß concentration explains a portion of variability in gut bacterial microbiota composition among breast-fed neonates. Whether TGFß acts in isolation or jointly with other bioactive components to alter bacterial composition requires further investigation. These findings contribute to an increased understanding of how breast-feeding affects the gut microbiome-and potentially immune development-in early life.


Assuntos
Aleitamento Materno , Microbioma Gastrointestinal , Interleucina-10/imunologia , Leite Humano/imunologia , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta2/imunologia , Adulto , Biomarcadores/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Leite Humano/metabolismo , Estudos Prospectivos , Análise de Regressão , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(2): 805-10, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24344318

RESUMO

Exposure to dogs in early infancy has been shown to reduce the risk of childhood allergic disease development, and dog ownership is associated with a distinct house dust microbial exposure. Here, we demonstrate, using murine models, that exposure of mice to dog-associated house dust protects against ovalbumin or cockroach allergen-mediated airway pathology. Protected animals exhibited significant reduction in the total number of airway T cells, down-regulation of Th2-related airway responses, as well as mucin secretion. Following dog-associated dust exposure, the cecal microbiome of protected animals was extensively restructured with significant enrichment of, amongst others, Lactobacillus johnsonii. Supplementation of wild-type animals with L. johnsonii protected them against both airway allergen challenge or infection with respiratory syncytial virus. L. johnsonii-mediated protection was associated with significant reductions in the total number and proportion of activated CD11c(+)/CD11b(+) and CD11c(+)/CD8(+) cells, as well as significantly reduced airway Th2 cytokine expression. Our results reveal that exposure to dog-associated household dust results in protection against airway allergen challenge and a distinct gastrointestinal microbiome composition. Moreover, the study identifies L. johnsonii as a pivotal species within the gastrointestinal tract capable of influencing adaptive immunity at remote mucosal surfaces in a manner that is protective against a variety of respiratory insults.


Assuntos
Hiper-Reatividade Brônquica/imunologia , Poeira/imunologia , Exposição Ambiental , Trato Gastrointestinal/microbiologia , Lactobacillus/crescimento & desenvolvimento , Microbiota/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Animais , Hiper-Reatividade Brônquica/prevenção & controle , Cães , Citometria de Fluxo , Fluorescência , Lactobacillus/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th2/imunologia
8.
Gut Microbes ; 16(1): 2290661, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38117587

RESUMO

Early life gut microbiome composition has been correlated with childhood obesity, though microbial functional contributions to disease origins remain unclear. Here, using an infant birth cohort (n = 349) we identify a distinct fecal microbiota composition in 1-month-old infants with the lowest rate of exclusive breastfeeding, that relates with higher relative risk for obesity and overweight phenotypes at two years. Higher-risk infant fecal microbiomes exhibited accelerated taxonomic and functional maturation and broad-ranging metabolic reprogramming, including reduced concentrations of neuro-endocrine signals. In vitro, exposure of enterocytes to fecal extracts from higher-risk infants led to upregulation of genes associated with obesity and with expansion of nutrient sensing enteroendocrine progenitor cells. Fecal extracts from higher-risk infants also promoted enterocyte barrier dysfunction. These data implicate dysregulation of infant microbiome functional development, and more specifically promotion of enteroendocrine signaling and epithelial barrier impairment in the early-life developmental origins of childhood obesity.


Assuntos
Microbioma Gastrointestinal , Microbiota , Obesidade Infantil , Lactente , Humanos , Criança , Enterócitos , Microbioma Gastrointestinal/fisiologia , Fezes
9.
Cell Rep Med ; 3(8): 100713, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35932762

RESUMO

Maternal asthma status, prenatal exposures, and infant gut microbiota perturbation are associated with heightened risk of atopy and asthma risk in childhood, observations hypothetically linked by intergenerational microbial transmission. Using maternal vaginal (n = 184) and paired infant stool (n = 172) samples, we identify four compositionally and functionally distinct Lactobacillus-dominated vaginal microbiota clusters (VCs) that relate to prenatal maternal health and exposures and infant serum immunoglobulin E (IgE) status at 1 year. Variance in bacteria shared between mother and infant pairs relate to VCs, maternal allergy/asthma status, and infant IgE levels. Heritable bacterial gene pathways associated with infant IgE include fatty acid synthesis and histamine and tryptophan degradation. In vitro, vertically transmitted Lactobacillus jensenii strains induce immunosuppressive phenotypes on human antigen-presenting cells. Murine supplementation with L. jensenii reduces lung eosinophils, neutrophilic expansion, and the proportion of interleukin-4 (IL-4)+ CD4+ T cells. Thus, bacterial and atopy heritability are intimately linked, suggesting a microbial component of intergenerational disease transmission.


Assuntos
Asma , Microbioma Gastrointestinal , Hipersensibilidade Imediata , Animais , Asma/genética , Bactérias/genética , Feminino , Microbioma Gastrointestinal/genética , Humanos , Tolerância Imunológica/genética , Imunoglobulina E , Lactente , Camundongos , Gravidez
10.
J Exp Med ; 218(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33175106

RESUMO

As microbial therapeutics are increasingly being tested in diverse patient populations, it is essential to understand the host and environmental factors influencing the microbiome. Through analysis of 1,359 gut microbiome samples from 946 healthy donors of the Milieu Intérieur cohort, we detail how microbiome composition is associated with host factors, lifestyle parameters, and disease states. Using a genome-based taxonomy, we found biological sex was the strongest driver of community composition. Additionally, bacterial populations shift across decades of life (age 20-69), with Bacteroidota species consistently increased with age while Actinobacteriota species, including Bifidobacterium, decreased. Longitudinal sampling revealed that short-term stability exceeds interindividual differences. By accounting for these factors, we defined global shifts in the microbiomes of patients with non-gastrointestinal tumors compared with healthy donors. Together, these results demonstrated that the microbiome displays predictable variations as a function of sex, age, and disease state. These variations must be considered when designing microbiome-targeted therapies or interpreting differences thought to be linked to pathophysiology or therapeutic response.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Microbioma Gastrointestinal , Neoplasias/microbiologia , Adulto , Idoso , Bifidobacterium/classificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
PLoS One ; 14(7): e0218999, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295268

RESUMO

Microbial dysbiosis commonly occurs in patients with inflammatory bowel diseases (IBD). Exogenous causes of dysbiosis such as antibiotics and diet are well described, but host derived causes are understudied. A20 is a potent regulator of signals triggered by microbial pattern molecules, and A20 regulates susceptibility to intestinal inflammation in mice and in humans. We now report that mice lacking A20 expression in dendritic cells, A20FL/FL CD11c-Cre mice (or A20dDC mice), spontaneously develop colitogenic intestinal dysbiosis that is evident upon weaning and precedes the onset of colitis. Intestines from A20dDC mice express increased amounts of Reg3ß and Reg3γ, but not Ang4. A20 deficient DCs promote gut microbiota perturbation in the absence of adaptive lymphocytes. Moreover, A20 deficient DCs directly induce expression of Reg3ß and Reg3γ but not Ang 4 in normal intestinal epithelial cell enteroid cultures in the absence of other cell types. These findings reveal a pathophysiological pathway in which defective expression of an IBD susceptibility gene in DCs drives aberrant expression of anti-bacterial peptides and luminal dysbiosis that in turn confers host susceptibility to intestinal inflammation.


Assuntos
Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Animais , Antibacterianos/farmacologia , Células Dendríticas/microbiologia , Disbiose/genética , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Humanos , Inflamação/genética , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Camundongos , Camundongos Knockout , Proteínas Associadas a Pancreatite/genética , Peptídeos/farmacologia , Ribonuclease Pancreático/genética , Simbiose/efeitos dos fármacos
13.
Nat Microbiol ; 4(11): 1851-1861, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332384

RESUMO

Neonates at risk of childhood atopy and asthma exhibit perturbation of the gut microbiome, metabolic dysfunction and increased concentrations of 12,13-diHOME in their faeces. However, the mechanism, source and contribution of this lipid to allergic inflammation remain unknown. Here, we show that intra-abdominal treatment of mice with 12,13-diHOME increased pulmonary inflammation and decreased the number of regulatory T (Treg) cells in the lungs. Treatment of human dendritic cells with 12,13-diHOME altered expression of PPARγ-regulated genes and reduced anti-inflammatory cytokine secretion and the number of Treg cells in vitro. Shotgun metagenomic sequencing of neonatal faeces indicated that bacterial epoxide hydrolase (EH) genes are more abundant in the gut microbiome of neonates who develop atopy and/or asthma during childhood. Three of these bacterial EH genes (3EH) specifically produce 12,13-diHOME, and treatment of mice with bacterial strains expressing 3EH caused a decrease in the number of lung Treg cells in an allergen challenge model. In two small birth cohorts, an increase in the copy number of 3EH or the concentration of 12,13-diHOME in the faeces of neonates was found to be associated with an increased probability of developing atopy, eczema or asthma during childhood. Our data indicate that elevated 12,13-diHOME concentrations impede immune tolerance and may be produced by bacterial EHs in the neonatal gut, offering a mechanistic link between perturbation of the gut microbiome during early life and atopy and asthma during childhood.


Assuntos
Asma/imunologia , Bactérias/classificação , Epóxido Hidrolases/genética , Fezes/química , Ácidos Linoleicos/análise , Animais , Bactérias/enzimologia , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Humanos , Tolerância Imunológica , Recém-Nascido , Masculino , Camundongos , Linfócitos T Reguladores/metabolismo
15.
Nat Med ; 22(10): 1187-1191, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27618652

RESUMO

Gut microbiota bacterial depletions and altered metabolic activity at 3 months are implicated in childhood atopy and asthma. We hypothesized that compositionally distinct human neonatal gut microbiota (NGM) exist, and are differentially related to relative risk (RR) of childhood atopy and asthma. Using stool samples (n = 298; aged 1-11 months) from a US birth cohort and 16S rRNA sequencing, neonates (median age, 35 d) were divisible into three microbiota composition states (NGM1-3). Each incurred a substantially different RR for multisensitized atopy at age 2 years and doctor-diagnosed asthma at age 4 years. The highest risk group, labeled NGM3, showed lower relative abundance of certain bacteria (for example, Bifidobacterium, Akkermansia and Faecalibacterium), higher relative abundance of particular fungi (Candida and Rhodotorula) and a distinct fecal metabolome enriched for pro-inflammatory metabolites. Ex vivo culture of human adult peripheral T cells with sterile fecal water from NGM3 subjects increased the proportion of CD4+ cells producing interleukin (IL)-4 and reduced the relative abundance of CD4+CD25+FOXP3+ cells. 12,13-DiHOME, enriched in NGM3 versus lower-risk NGM states, recapitulated the effect of NGM3 fecal water on relative CD4+CD25+FOXP3+ cell abundance. These findings suggest that neonatal gut microbiome dysbiosis might promote CD4+ T cell dysfunction associated with childhood atopy.


Assuntos
Asma/epidemiologia , Linfócitos T CD4-Positivos/imunologia , Microbioma Gastrointestinal/genética , Hipersensibilidade/epidemiologia , RNA Ribossômico 16S/genética , Asma/imunologia , Bifidobacterium/genética , Linfócitos T CD4-Positivos/metabolismo , Candida/genética , Diferenciação Celular/imunologia , Pré-Escolar , Faecalibacterium/genética , Fezes/química , Feminino , Fatores de Transcrição Forkhead/metabolismo , Microbioma Gastrointestinal/imunologia , Humanos , Hipersensibilidade/imunologia , Lactente , Recém-Nascido , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-4/imunologia , Masculino , Razão de Chances , Rhodotorula/genética , Análise de Sequência de RNA , Linfócitos T/imunologia
16.
Sci Rep ; 6: 31775, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27558272

RESUMO

The joint impact of pregnancy, environmental, and sociocultural exposures on early life gut microbiome is not yet well-characterized, especially in racially and socioeconomically diverse populations. Gut microbiota of 298 children from a Detroit-based birth cohort were profiled using 16S rRNA sequencing: 130 neonates (median age = 1.2 months) and 168 infants (median age = 6.6 months). Multiple factors were associated with neonatal gut microbiome composition in both single- and multi-factor models, with independent contributions of maternal race-ethnicity, breastfeeding, mode of delivery, marital status, exposure to environmental tobacco smoke, and indoor pets. These findings were consistent in the infants, and networks demonstrating the shared impact of factors on gut microbial composition also showed notable topological similarity between neonates and infants. Further, latent groups defined by these factors explained additional variation, highlighting the importance of combinatorial effects. Our findings also have implications for studies investigating the impact of the early life gut microbiota on disease.


Assuntos
Microbioma Gastrointestinal , Intestinos/microbiologia , Microbiota , Adulto , Algoritmos , Animais , Aleitamento Materno , Características Culturais , Meio Ambiente , Fezes , Feminino , Humanos , Lactente , Recém-Nascido , Estilo de Vida , Pessoa de Meia-Idade , Mães , Animais de Estimação , Filogenia , Gravidez , Complicações na Gravidez , RNA Ribossômico 16S/genética , Fumar/efeitos adversos , Classe Social , Adulto Jovem
17.
Cell Host Microbe ; 17(5): 592-602, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25974301

RESUMO

Asthma and atopy, classically associated with hyper-activation of the T helper 2 (Th2) arm of adaptive immunity, are among the most common chronic illnesses worldwide. Emerging evidence relates atopy and asthma to the composition and function of the human microbiome, the collection of microbes that reside in and on and interact with the human body. The ability to interrogate microbial ecology of the human host is due in large part to recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review we explore the roles of respiratory, gut, and environmental microbiomes in asthma and allergic disease development, manifestation, and attenuation. Though still a relatively nascent field of research, evidence to date suggests that the airway and/or gut microbiome may represent fertile targets for prevention or management of allergic asthma and other diseases in which adaptive immune dysfunction is a prominent feature.


Assuntos
Disbiose/complicações , Disbiose/imunologia , Microbiologia Ambiental , Trato Gastrointestinal/microbiologia , Hipersensibilidade/microbiologia , Microbiota/imunologia , Sistema Respiratório/microbiologia , Animais , Humanos
18.
J Microbiol Methods ; 91(2): 231-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22975469

RESUMO

Standardized studies examining environmental microbial exposure in populations at risk for asthma are necessary to improve our understanding of the role this factor plays in disease development. Here we describe studies aimed at developing guidelines for high-resolution culture-independent microbiome profiling, using a phylogenetic microarray (PhyloChip), of house dust samples in a cohort collected as part of the NIH-funded Inner City Asthma Consortium (ICAC). We demonstrate that though extracted DNA concentrations varied across dust samples, the majority produced sufficient 16S rRNA to be profiled by the array. Comparison of array and 454-pyrosequencing performed in parallel on a subset of samples, illustrated that increasingly deeper sequencing efforts validated greater numbers of array-detected taxa. Community composition agreement across samples exhibited a hierarchy in concordance, with the highest level of agreement in replicate array profiles followed by samples collected from adjacent 1×1 m(2) sites in the same room, adjacent sites with different sized sampling quadrants (1×1 and 2×2 m(2)), different sites within homes (living and bedroom) to lowest in living room samples collected from different homes. The guidelines for sample collection and processing in this pilot study extend beyond PhyloChip based studies of house-associated microbiota, and bear relevance for other microbiome profiling approaches such as next-generation sequencing.


Assuntos
Asma/etiologia , Biota , Poeira , Microbiologia Ambiental , Metagenoma , Metagenômica/métodos , Metagenômica/normas , Criança , Humanos , Análise em Microsséries/métodos , Análise em Microsséries/normas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
19.
Expert Rev Anti Infect Ther ; 8(4): 435-54, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20377338

RESUMO

The human superorganism is a conglomerate of mammalian and microbial cells, with the latter estimated to outnumber the former by ten to one and the microbial genetic repertoire (microbiome) to be approximately 100-times greater than that of the human host. Given the ability of the immune response to rapidly counter infectious agents, it is striking that such a large density of microbes can exist in a state of synergy within the human host. This is particularly true of the distal gastrointestinal (GI) tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 x 10(14) microorganisms. An ever-increasing body of evidence implicates the GI microbiota in defining states of health and disease. Here, we review the literature in adult and pediatric GI microbiome studies, the emerging links between microbial community structure, function, infection and disease, and the approaches to manipulate this crucial ecosystem to improve host health.


Assuntos
Trato Gastrointestinal/microbiologia , Antibacterianos/farmacologia , Dieta , Alimentos , Humanos , Imunidade Inata
20.
PLoS One ; 5(1): e8745, 2010 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20090909

RESUMO

Colonization of the infant gut by microorganisms over the first year of life is crucial for development of a balanced immune response. Early alterations in the gastrointestinal microbiota of neonates has been linked with subsequent development of asthma and atopy in older children. Here we describe high-resolution culture-independent analysis of stool samples from 6-month old infants fed daily supplements of Lactobacillus casei subsp. Rhamnosus (LGG) or placebo in a double-blind, randomized Trial of Infant Probiotic Supplementation (TIPS). Bacterial community composition was examined using a high-density microarray, the 16S rRNA PhyloChip, and the microbial assemblages of infants with either high or low LGG abundance were compared. Communities with high abundance of LGG exhibited promotion of phylogenetically clustered taxa including a number of other known probiotic species, and were significantly more even in their distribution of community members. Ecologically, these aspects are characteristic of communities that are more resistant to perturbation and outgrowth of pathogens. PhyloChip analysis also permitted identification of taxa negatively correlated with LGG abundance that have previously been associated with atopy, as well as those positively correlated that may prove useful alternative targets for investigation as alternative probiotic species. From these findings we hypothesize that a key mechanism for the protective effect of LGG supplementation on subsequent development of allergic disease is through promotion of a stable, even, and functionally redundant infant gastrointestinal community.


Assuntos
Lacticaseibacillus casei/isolamento & purificação , Sequência de Bases , Análise por Conglomerados , Primers do DNA , Método Duplo-Cego , Humanos , Lactente , Lacticaseibacillus casei/classificação , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Placebos , Reação em Cadeia da Polimerase , Probióticos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa