Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(35): e202409670, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38943493

RESUMO

In thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs), acceleration of reverse intersystem crossing (RISC) and suppression of intersystem crossing (ISC) are demanded to shorten a lifetime of triplet excitons. As a system realizing RISC faster than ISC, inverted singlet-triplet excited states (iST) with a negative energy difference (ΔEST) between the lowest excited singlet and the lowest triplet states have been gathering much attention recently. Here, we have focused on an asymmetric hexa-azaphenalene (A6AP) core to obtain a new insight into iST. Based on A6AP, we have newly designed A6AP-Cz with the calculated ΔEST of -44 meV. The experimental studies of a synthesized A6AP-Cz revealed that the lifetime of delayed fluorescence (τDF) was only 54 ns, which was the shortest among all organic materials. The rate constant of RISC (kRISC=1.9×107 s-1) was greater than that of ISC (kISC=1.0×107 s-1). The negative ΔEST of A6AP-Cz was experimentally confirmed from 1) the kRISC and kISC (-45 meV) and 2) the temperature-dependent τDF. 3) The onsets of fluorescence and phosphorescence spectra at 77 K also supported the evidence of negative ΔEST (-73 meV). This study demonstrated the potential of A6AP as an iST core for the first time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa