Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mem Inst Oswaldo Cruz ; 114: e190076, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31038550

RESUMO

BACKGROUND: In Brazil, the Yellow Fever virus (YFV) is endemic in the Amazon, from where it eventually expands into epidemic waves. Coastal south-eastern (SE) Brazil, which has been a YFV-free region for eight decades, has reported a severe sylvatic outbreak since 2016. The virus spread from the north toward the south of the Rio de Janeiro (RJ) state, causing 307 human cases with 105 deaths during the 2016-2017 and 2017-2018 transmission seasons. It is unclear, however, whether the YFV would persist in the coastal Atlantic Forest of RJ during subsequent transmission seasons. OBJECTIVES: To conduct a real-time surveillance and assess the potential persistence of YFV in the coastal Atlantic Forest of RJ during the 2018-2019 transmission season. METHODS: We combined epizootic surveillance with fast diagnostic and molecular, phylogenetic, and evolutionary analyses. FINDINGS: Using this integrative strategy, we detected the first evidence of YFV re-emergence in the third transmission season (2018-2019) in a dying howler monkey from the central region of the RJ state. The YFV detected in 2019 has the molecular signature associated with the current SE YFV outbreak and exhibited a close phylogenetic relationship with the YFV lineage that circulated in the same Atlantic Forest fragment during the past seasons. This lineage circulated along the coastal side of the Serra do Mar mountain chain, and its evolution seems to be mainly driven by genetic drift. The potential bridge vector Aedes albopictus was found probing on the recently dead howler monkey in the forest edge, very close to urban areas. MAIN CONCLUSIONS: Collectively, our data revealed that YFV transmission persisted at the same Atlantic Forest area for at least three consecutive transmission seasons without the need of new introductions. Our real-time surveillance strategy permitted health authorities to take preventive actions within 48 h after the detection of the sick non-human primate. The local virus persistence and the proximity of the epizootic forest to urban areas reinforces the concern with regards to the risk of re-urbanisation and seasonal re-emergence of YFV, stressing the need for continuous effective surveillance and high vaccination coverage in the SE region, particularly in RJ, an important tourist location.


Assuntos
Aedes/virologia , Febre Amarela/epidemiologia , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Alouatta , Animais , Brasil/epidemiologia , Surtos de Doenças , Humanos , Filogeografia , Estações do Ano , População Urbana , Febre Amarela/transmissão
2.
Viruses ; 15(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36680231

RESUMO

Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.


Assuntos
Interferon Tipo I , Vírus da Febre Amarela , Vírus da Febre Amarela/fisiologia , Interferon Tipo I/genética , Aminoácidos , Evasão da Resposta Imune , Brasil , Metiltransferases/metabolismo , Proteínas não Estruturais Virais/genética
3.
Viruses ; 15(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851651

RESUMO

In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016-2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.


Assuntos
Culicidae , Febre Amarela , Animais , Vírus da Febre Amarela/genética , Febre Amarela/epidemiologia , Brasil/epidemiologia , Filogenia , Mosquitos Vetores , Florestas
4.
Viruses ; 14(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36016440

RESUMO

Yellow fever virus (YFV) caused an outbreak in the Brazilian Southeast from 2016 to 2019, of the most significant magnitude since the 1900s. An investigation of the circulating virus revealed that most of the genomes detected in this period carried nine unique amino acid polymorphisms, with eight located in the non-structural proteins NS3 and NS5, which are pivotal for viral replication. To elucidate the effect of these amino acid changes on viral infection, we constructed viruses carrying amino acid alterations in NS3 and NS5, performed infection in different cells, and assessed their neurovirulence in BALB/c mice and infected AG129 mice. We observed that the residues that compose the YFV 2016-2019 molecular signature in the NS5 protein might have been related to an attenuated phenotype, and that the alterations in the NS3 protein only slightly affected viral infection in AG129 mice, increasing to a low extent the mortality rate of these animals. These results contributed to unveiling the role of specific naturally occurring amino acid changes in the circulating strain of YFV in Brazil.


Assuntos
Febre Amarela , Aminoácidos/genética , Animais , Brasil/epidemiologia , Surtos de Doenças , Camundongos , Fenótipo , Febre Amarela/epidemiologia , Vírus da Febre Amarela/genética
5.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630300

RESUMO

The possibility of a Zika virus epidemic resurgence requires studies to understand its mechanisms of pathogenicity. Here, we describe the isolation of the Zika virus from breast milk (Rio-BM1) and compare its genetic and virological properties with two other isolates (Rio-U1 and Rio-S1) obtained during the same epidemic period. Complete genomic analysis of these three viral isolates showed that they carry characteristics of the American isolates and belong to the Asian genotype. Furthermore, we detected eight non-synonymous single nucleotide variants and multiple nucleotide polymorphisms that reflect phenotypic changes. The new isolate, Rio-BM1, showed the lowest replication rates in mammalian cells, induced lower cell death rates, was more susceptible to treatment with type I IFN, and was less pathogenic than Rio-U1 in a murine model. In conclusion, the present study shows evidence that the isolate Rio-BM1 is more attenuated than Rio-U1, probably due to the impact of genetic alterations in the modulation of virulence. The results obtained in our in vitro model were consistent with the pathogenicity observed in the animal model, indicating that this method can be used to assess the virulence level of other isolates or to predict the pathogenicity of reverse genetic constructs containing other polymorphisms.

6.
Front Microbiol ; 13: 757084, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237244

RESUMO

Since the beginning of the XXI Century, the yellow fever virus (YFV) has been cyclically spreading from the Amazon basin to Brazil's South and Southeast regions, culminating in an unprecedented outbreak that started in 2016. In this work, we studied four YFV isolated from non-human primates obtained during outbreaks in the states of Rio Grande do Sul in 2008 (PR4408), Goiás (GO05), and Espírito Santo (ES-504) in 2017, and Rio de Janeiro (RJ 155) in 2019. These isolates have genomic differences mainly distributed in non-structural proteins. We compared the isolates' rates of infection in mammal and mosquito cells and neurovirulence in adult mice. RJ 155 and PR4408 YFV isolates exhibited higher infectivity in mammalian cells and neurovirulence in mice. In mosquito Aag2 cells, GO05 and PR4408 displayed the lowest proliferation rates. These results suggest that RJ 155 and PR4408 YFV isolates carry some genomic markers that increase infectivity in mammal hosts. From this characterization, it is possible to contribute to discovering new molecular markers for the virulence of YFV.

7.
Cell Host Microbe ; 30(2): 248-259.e6, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34998466

RESUMO

The resurgence of yellow fever in South America has prompted vaccination against the etiologic agent, yellow fever virus (YFV). Current vaccines are based on a live-attenuated YF-17D virus derived from a virulent African isolate. The capacity of these vaccines to induce neutralizing antibodies against the vaccine strain is used as a surrogate for protection. However, the sensitivity of genetically distinct South American strains to vaccine-induced antibodies is unknown. We show that antiviral potency of the polyclonal antibody response in vaccinees is attenuated against an emergent Brazilian strain. This reduction was attributable to amino acid changes at two sites in central domain II of the glycoprotein E, including multiple changes at the domain I-domain II hinge, which are unique to and shared among most South American YFV strains. Our findings call for a reevaluation of current approaches to YFV immunological surveillance in South America and suggest approaches for updating vaccines.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Anticorpos Antivirais , Brasil , Genótipo , Humanos , Vacinas Atenuadas , Vírus da Febre Amarela/genética
8.
Front Microbiol ; 12: 639655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717035

RESUMO

In 2016, the world experienced the unprecedented Zika epidemic. The ZIKV emerged as a major human pathogen due to its association with the impairment of perinatal development and Guillain-Barré syndrome. The occurrence of these severe cases of Zika points to the significance of studies for understanding the molecular determinants of flavivirus pathogenesis. Reverse genetics is a powerful method for studying the replication and determinants of pathogenesis, virulence, and viral attenuation of flaviviruses, facilitating the design of vaccines and therapeutics. However, the main hurdle in the development of infectious clones is the instability of full-length cDNA in Escherichia coli. Here, we described the development of a genetically stable and efficient infectious clone based on the ZIKV Rio-U1 isolated in the 2016 epidemic in Brazil. The employed strategy consisted of cloning the viral cDNA genome into two stable plasmid subclones and obtaining a high-quality cDNA template with increment in DNA mass for in vitro transcription by PCR amplification. The strategy for developing a ZIKV infectious cDNA clone designed in this study was successful, yielding a replicative and efficient clone-derived virus with high similarities with its parental virus, Rio-U1, by comparison of the proliferation capacity in mammal and insect cells. The infection of AG129 immunocompromised mice caused identical mortality rates, with similar disease progression and morbidity in the animals infected with the parental and the cDNA-derived virus. Histopathological analyses of mouse brains infected with the parental and the cDNA-derived viruses revealed a similar pathogenesis degree. We observed meningoencephalitis, cellular pyknosis, and neutrophilic invasion adjacent to the choroid plexus and perivascular cuffs with the presence of neutrophils. The developed infectious clone will be a tool for genetic and functional studies in vitro and in vivo to understand viral infection and pathogenesis better.

9.
Biochim Biophys Acta Gen Subj ; 1864(4): 129521, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31931019

RESUMO

BACKGROUND: The Yellow Fever virus (YFV) is transmitted by mosquitos and causes an infection with symptoms including fever, headaches and nausea. In 20-50% of the cases, the disease may evolve to a visceral stage, reaching high mortality rates. YFV NS2B-NS3 protease has been identified as an important drug target. METHODS: Herein, we describe the crystal structure of the NS2B-NS3 protease from the 2017 YFV Brazilian circulating strain using X-ray crystallography. Furthermore, we used a combination of biochemical and biophysical assays to characterize the enzyme and investigate the impact of the polymorphisms observed in different YFV circulating strains. RESULTS: Surprisingly, the crystal structure of YFV protease seems to adopt the closed conformation without the presence of a binding partner. Although D88E and K121R mutants exhibited a lower affinity for the substrate, both revealed to be more processive, resulting in a similar catalytic efficiency in relation to the WT protease. Still, both mutants showed an accentuated decrease in stability when compared with the WT. CONCLUSIONS: The crystal structure of YFV NS2B-NS3 in closed conformation might be an important tool for the development of new drugs, as well as understanding the activation mechanism of viral proteases. Biochemical analyses indicate that the NS2B-NS3 protease of the circulating strain of YFV is more stable than previous strains. GENERAL SIGNIFICANCE: The YFV NS2B-NS3 protease is the first flaviviral structure described in its closed conformation when in a free form, implying that external factors might induce the activation of the enzyme.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírus da Febre Amarela/enzimologia , Brasil , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas não Estruturais Virais/metabolismo
10.
Front Microbiol ; 10: 1079, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178835

RESUMO

The current outbreak of yellow fever virus (YFV) that is afflicting Brazil since the end of 2016 probably originated from a re-introduction of YFV from endemic areas into the non-endemic Southeastern Brazil. However, the lack of genomic sequences from endemic regions hinders the tracking of YFV's dissemination routes. We assessed the origin and spread of the ongoing YFV Brazilian outbreak analyzing a new set of YFV strains infecting humans, non-human primates (NHPs) and mosquitoes sampled across five Brazilian states from endemic and non-endemic regions between 2015 and 2018. We found two YFV sub-clade 1E lineages circulating in NHP from Goiás state (GO), resulting from independent viral introductions into the Araguaia tributary river basin: while one strain from 2017 clustered intermingled with Venezuelan YFV strains from 2000, the other YFV strains sampled in 2015 and 2017 clustered with sequences of the current YFV outbreak in the Brazilian Southeastern region (named YFV2015-2018 lineage), displaying the same molecular signature associated to the current YFV outbreak. After its introduction in GO at around mid-2014, the YFV2015-2018 lineage followed two paths of dissemination outside GO, originating two major YFV sub-lineages: (1) the YFVMG/ES/RJ sub-lineage spread sequentially from the eastern area of Minas Gerais state to Espírito Santo and then to Rio de Janeiro states, following the Southeast Atlantic basin; (2) the YFVMG/SP sub-lineage spread from the southwestern area of Minas Gerais to the metropolitan region of São Paulo state, following the Paraná basin. These results indicate the ongoing YFV outbreak in Southeastern Brazil originated from a dissemination event from GO almost 2 years before its recognition at the end of 2016. From GO this lineage was introduced in Minas Gerais state at least two times, originating two sub-lineages that followed different routes toward densely populated areas. The spread of YFV outside endemic regions for at least 4 years stresses the imperative importance of the continuous monitoring of YFV to aid decision-making for effective control policies aiming the increase of vaccination coverage to avoid the YFV transmission in densely populated urban centers.

11.
Mem. Inst. Oswaldo Cruz ; 114: e190076, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1002689

RESUMO

BACKGROUND In Brazil, the Yellow Fever virus (YFV) is endemic in the Amazon, from where it eventually expands into epidemic waves. Coastal south-eastern (SE) Brazil, which has been a YFV-free region for eight decades, has reported a severe sylvatic outbreak since 2016. The virus spread from the north toward the south of the Rio de Janeiro (RJ) state, causing 307 human cases with 105 deaths during the 2016-2017 and 2017-2018 transmission seasons. It is unclear, however, whether the YFV would persist in the coastal Atlantic Forest of RJ during subsequent transmission seasons. OBJECTIVES To conduct a real-time surveillance and assess the potential persistence of YFV in the coastal Atlantic Forest of RJ during the 2018-2019 transmission season. METHODS We combined epizootic surveillance with fast diagnostic and molecular, phylogenetic, and evolutionary analyses. FINDINGS Using this integrative strategy, we detected the first evidence of YFV re-emergence in the third transmission season (2018-2019) in a dying howler monkey from the central region of the RJ state. The YFV detected in 2019 has the molecular signature associated with the current SE YFV outbreak and exhibited a close phylogenetic relationship with the YFV lineage that circulated in the same Atlantic Forest fragment during the past seasons. This lineage circulated along the coastal side of the Serra do Mar mountain chain, and its evolution seems to be mainly driven by genetic drift. The potential bridge vector Aedes albopictus was found probing on the recently dead howler monkey in the forest edge, very close to urban areas. MAIN CONCLUSIONS Collectively, our data revealed that YFV transmission persisted at the same Atlantic Forest area for at least three consecutive transmission seasons without the need of new introductions. Our real-time surveillance strategy permitted health authorities to take preventive actions within 48 h after the detection of the sick non-human primate. The local virus persistence and the proximity of the epizootic forest to urban areas reinforces the concern with regards to the risk of re-urbanisation and seasonal re-emergence of YFV, stressing the need for continuous effective surveillance and high vaccination coverage in the SE region, particularly in RJ, an important tourist location.


Assuntos
Febre Amarela/terapia , Sistemas de Transporte de Aminoácidos , Mosquitos Vetores/patogenicidade , Alouatta , Filogeografia
13.
Tese em Português | Arca: Repositório institucional da Fiocruz | ID: arc-57868

RESUMO

A febre amarela é uma arbovirose com altas taxas de mortalidade, que ocasiona surtos esporádicos na África e na América do Sul. O vírus da febre amarela (Yellow fever virus ­ YFV) responsável pela disseminação da doença no Brasil desde a virada do século, pertence a uma sub-linhagem moderna do genótipo sul-americano I, a sub linhagem 1E. A partir de 2015, foi detectado um conjunto de nove marcadores genéticos no YFV, que ocasionou em 2017 e 2018 um surto sem precedentes, desde o início da vacinação. Esses marcadores representam uma assinatura molecular inédita, considerando todas as sequências do vírus disponíveis em domínio público. Das nove substituições, oito estão localizadas nas proteínas NS3 e NS5. A localização por modelagem tridimensional de NS3 e NS5 sugeriu que tais alterações poderiam influenciar nas funcionalidades destas proteínas, e talvez, desempenhar algum papel de adaptação aos hospedeiros. Este trabalho propõe estudar o efeito das alterações genéticas nas proteínas NS3 e NS5 em diferentes aspectos biológicos do ciclo replicativo viral: na infecção viral em culturas celulares e em camundongos; na modulação da resposta antiviral por interferon do tipo I (IFN-I); e na atividade enzimática do domínio MTase da proteína NS5. Em uma primeira análise, avaliou-se o papel na infecção viral de quatro vírus isolados de primatas não humanos, dois carreando a assinatura molecular. Estes vírus foram comparados quanto à capacidade de infectar células de mosquitos e de mamíferos, e quanto à neurovirulência em camundongos. Observamos que os fenótipos apresentados pelos vírus isolados eram resultado de múltiplos fatores genéticos adicionais, e não estavam relacionados à assinatura molecular, permitindo a identificação de potenciais marcadores de virulência. Em uma segunda abordagem, foram sintetizados cinco YFV a partir do isolado selvagem ES-504 de 2017, com diferentes composições genéticas em relação aos marcadores nas proteínas NS3 e NS5. A administração viral intracerebral em camundongos evidenciou que animais inoculados com os vírus sintéticos não apresentaram diferenças em relação aos indicadores de neurovirulência, enquanto os animais inoculados com os isolados virais divergiram neste parâmetro. Os YFV sintéticos ainda foram avaliados quanto à infectividade em camundongos susceptíveis AG129, e os resultados mostraram que os marcadores na proteína NS3 não ocasionaram diferenças em infectividade, enquanto os marcadores da assinatura molecular na proteína NS5 resultaram em atenuação viral. Portanto, os resultados obtidos indicam que os marcadores presentes na proteína NS5 podem ser os principais envolvidos na modulação de virulência viral. A caracterização da atividade enzimática da proteína NS5 MTase foi avaliada comparando a proteína NS5 do surto 2017-2019 com uma variante enzimática de YFV circulante nos anos 2000s. A cinética enzimática e os ensaios de inibição sugerem que a proteína do YFV 2017-2019 tem afinidade menor pelo doador de metila que a proteína presente nos vírus do recente surto, indicando que estas alterações podem interferir na conformação do sítio de ligação a este substrato. Porém, o impacto estrutural das substituições não influenciou na replicação viral em modelo celular, nem na neurovirulência em camundongos. Por fim, os resultados em modelo celular de resistência à tratamento com IFN- I mostraram que os marcadores no domínio MTase influenciam no aumento da sensibilidade a resposta imune mediada por esta citocina. Os resultados obtidos neste projeto sugerem que a assinatura molecular do YFV 2016-2019 nas proteínas NS3 e NS5 representam marcadores do YFV que modulam replicação e virulência em modelo celular e murino. Estes resultados contribuíram para o melhor entendimento das bases biológicas da infecção viral e patogênese do YFV circulante no Brasil desde 2015.


Assuntos
Vírus da Febre Amarela , Biomarcadores , Proteínas não Estruturais Virais , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa