RESUMO
A powerful tool for controlling interfacial properties and molecular architecture relies on the tailored adsorption of stimuli-responsive block copolymers onto surfaces. Here, we use computational and experimental approaches to investigate the adsorption behavior of thermally responsive polypeptide block copolymers (elastin-like polypeptides, ELPs) onto silica surfaces, and to explore the effects of surface affinity and micellization on the adsorption kinetics and the resultant polypeptide layers. We demonstrate that genetic incorporation of a silica-binding peptide (silaffin R5) results in enhanced adsorption of these block copolymers onto silica surfaces as measured by quartz crystal microbalance and ellipsometry. We find that the silaffin peptide can also direct micelle adsorption, leading to close-packed micellar arrangements that are distinct from the sparse, patchy arrangements observed for ELP micelles lacking a silaffin tag, as evidenced by atomic force microscopy measurements. These experimental findings are consistent with results of dissipative particle dynamics simulations. Wettability measurements suggest that surface immobilization hampers the temperature-dependent conformational change of ELP micelles, while adsorbed ELP unimers (i.e., unmicellized block copolymers) retain their thermally responsive property at interfaces. These observations provide guidance on the use of ELP block copolymers as building blocks for fabricating smart surfaces and interfaces with programmable architecture and functionality.
Assuntos
Elastina/química , Micelas , Fragmentos de Peptídeos/química , Precursores de Proteínas/química , Dióxido de Silício/química , Adsorção , Simulação de Dinâmica Molecular , MolhabilidadeRESUMO
A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self-assembled from BAB single-strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self-assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm-like or hamburger-shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self-assembly of ssDNA triblocks.
Assuntos
DNA de Cadeia Simples/química , Polieletrólitos/química , Cloreto de Sódio/química , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Micelas , Concentração Osmolar , Solventes/químicaRESUMO
Self-assembly processes of polyelectrolyte block copolymers are ubiquitous in industrial and biological processes; understanding their physical properties can also provide insights into the design of polyelectrolyte materials with novel and tailored properties. Here, we report systematic analysis on how the ionic strength of the solvent and the length of the polyelectrolyte block affect the self-assembly and morphology of the polyelectrolyte block copolymer materials by constructing a salt-dependent morphological phase diagram using an implicit solvent ionic strength (ISIS) method for dissipative particle dynamics (DPD) simulations. This diagram permits the determination of the conditions for the morphological transition into a specific shape, namely vesicles or lamellar aggregates, wormlike/cylindrical micelles, and spherical micelles. The scaling behavior for the size of spherical micelles is predicted, in terms of radius of gyration (R(g,m)) and thickness of corona (Hcorona), as a function of solvent ionic strength (c(s)) and polyelectrolyte length (NA), which are R(g,m) â¼ c(s)(-0.06)N(A)(0.54) and Hcorona â¼ c(s)(-0.11)N(A)(0.75). The simulation results were corroborated through AFM and static light scattering measurements on the example of the self-assembly of monodisperse, single-stranded DNA block-copolynucleotides (polyT50-b-F-dUTP). Overall, we were able to predict the salt-responsive morphology of polyelectrolyte materials in aqueous solution and show that a spherical-cylindrical-lamellar change in morphology can be obtained through an increase in solvent ionic strength or a decrease of polyelectrolyte length.