Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 608(7924): 733-740, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978187

RESUMO

Single-cell transcriptomics (scRNA-seq) has greatly advanced our ability to characterize cellular heterogeneity1. However, scRNA-seq requires lysing cells, which impedes further molecular or functional analyses on the same cells. Here, we established Live-seq, a single-cell transcriptome profiling approach that preserves cell viability during RNA extraction using fluidic force microscopy2,3, thus allowing to couple a cell's ground-state transcriptome to its downstream molecular or phenotypic behaviour. To benchmark Live-seq, we used cell growth, functional responses and whole-cell transcriptome read-outs to demonstrate that Live-seq can accurately stratify diverse cell types and states without inducing major cellular perturbations. As a proof of concept, we show that Live-seq can be used to directly map a cell's trajectory by sequentially profiling the transcriptomes of individual macrophages before and after lipopolysaccharide (LPS) stimulation, and of adipose stromal cells pre- and post-differentiation. In addition, we demonstrate that Live-seq can function as a transcriptomic recorder by preregistering the transcriptomes of individual macrophages that were subsequently monitored by time-lapse imaging after LPS exposure. This enabled the unsupervised, genome-wide ranking of genes on the basis of their ability to affect macrophage LPS response heterogeneity, revealing basal Nfkbia expression level and cell cycle state as important phenotypic determinants, which we experimentally validated. Thus, Live-seq can address a broad range of biological questions by transforming scRNA-seq from an end-point to a temporal analysis approach.


Assuntos
Sobrevivência Celular , Perfilação da Expressão Gênica , Macrófagos , RNA-Seq , Análise de Célula Única , Transcriptoma , Tecido Adiposo/citologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Genoma/efeitos dos fármacos , Genoma/genética , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Inibidor de NF-kappaB alfa/genética , Especificidade de Órgãos , Fenótipo , RNA/genética , RNA/isolamento & purificação , RNA-Seq/métodos , RNA-Seq/normas , Reprodutibilidade dos Testes , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/normas , Análise de Célula Única/métodos , Células Estromais/citologia , Células Estromais/metabolismo , Fatores de Tempo , Transcriptoma/genética
2.
Nat Methods ; 21(6): 1063-1073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802520

RESUMO

The dynamics of cellular membrane tension and its role in mechanosensing, which is the ability of cells to respond to physical stimuli, remain incompletely understood, mainly due to the lack of appropriate tools. Here, we report a force-controlled nanopipette-based method that combines fluidic force microscopy with fluorescence imaging for precise manipulation of the cellular membrane tension while monitoring the impact on single-cell mechanosensitivity. The force-controlled nanopipette enables control of the indentation force imposed on the cell cortex as well as of the aspiration pressure applied to the plasma membrane. We show that this setup can be used to concurrently monitor the activation of Piezo1 mechanosensitive ion channels via calcium imaging. Moreover, the spatiotemporal behavior of the tension propagation is assessed with the fluorescent membrane tension probe Flipper-TR, and further dissected using molecular dynamics modeling. Finally, we demonstrate that aspiration and indentation act independently on the cellular mechanobiological machinery, that indentation induces a local pre-tension in the membrane, and that membrane tension stays confined by links to the cytoskeleton.


Assuntos
Membrana Celular , Canais Iônicos , Mecanotransdução Celular , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia , Humanos , Simulação de Dinâmica Molecular , Cálcio/metabolismo , Animais
3.
PLoS Biol ; 22(4): e3002597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38684033

RESUMO

Intestinal epithelial cells (IECs) play pivotal roles in nutrient uptake and in the protection against gut microorganisms. However, certain enteric pathogens, such as Salmonella enterica serovar Typhimurium (S. Tm), can invade IECs by employing flagella and type III secretion systems (T3SSs) with cognate effector proteins and exploit IECs as a replicative niche. Detection of flagella or T3SS proteins by IECs results in rapid host cell responses, i.e., the activation of inflammasomes. Here, we introduce a single-cell manipulation technology based on fluidic force microscopy (FluidFM) that enables direct bacteria delivery into the cytosol of single IECs within a murine enteroid monolayer. This approach allows to specifically study pathogen-host cell interactions in the cytosol uncoupled from preceding events such as docking, initiation of uptake, or vacuole escape. Consistent with current understanding, we show using a live-cell inflammasome reporter that exposure of the IEC cytosol to S. Tm induces NAIP/NLRC4 inflammasomes via its known ligands flagellin and T3SS rod and needle. Injected S. Tm mutants devoid of these invasion-relevant ligands were able to grow in the cytosol of IECs despite the absence of T3SS functions, suggesting that, in the absence of NAIP/NLRC4 inflammasome activation and the ensuing cell death, no effector-mediated host cell manipulation is required to render the epithelial cytosol growth-permissive for S. Tm. Overall, the experimental system to introduce S. Tm into single enteroid cells enables investigations into the molecular basis governing host-pathogen interactions in the cytosol with high spatiotemporal resolution.


Assuntos
Proteínas de Ligação ao Cálcio , Citosol , Flagelina , Interações Hospedeiro-Patógeno , Inflamassomos , Salmonella typhimurium , Sistemas de Secreção Tipo III , Citosol/metabolismo , Citosol/microbiologia , Animais , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Inflamassomos/metabolismo , Camundongos , Flagelina/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Proteína Inibidora de Apoptose Neuronal/genética , Células Epiteliais/microbiologia , Células Epiteliais/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Camundongos Endogâmicos C57BL , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Análise de Célula Única/métodos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo
4.
PLoS Biol ; 20(3): e3001576, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35320264

RESUMO

Mitochondria and the complex endomembrane system are hallmarks of eukaryotic cells. To date, it has been difficult to manipulate organelle structures within single live cells. We developed a FluidFM-based approach to extract, inject, and transplant organelles from and into living cells with subcellular spatial resolution. The technology combines atomic force microscopy, optical microscopy, and nanofluidics to achieve force and volume control with real-time inspection. We developed dedicated probes that allow minimally invasive entry into cells and optimized fluid flow to extract specific organelles. When extracting single or a defined number of mitochondria, their morphology transforms into a pearls-on-a-string phenotype due to locally applied fluidic forces. We show that the induced transition is calcium independent and results in isolated, intact mitochondria. Upon cell-to-cell transplantation, the transferred mitochondria fuse to the host cells mitochondrial network. Transplantation of healthy and drug-impaired mitochondria into primary keratinocytes allowed monitoring of mitochondrial subpopulation rescue. Fusion with the mitochondrial network of recipient cells occurred 20 minutes after transplantation and continued for over 16 hours. After transfer of mitochondria and cell propagation over generations, donor mitochondrial DNA (mtDNA) was replicated in recipient cells without the need for selection pressure. The approach opens new prospects for the study of organelle physiology and homeostasis, but also for therapy, mechanobiology, and synthetic biology.


Assuntos
DNA Mitocondrial , Mitocôndrias , Cálcio , Homeostase , Mitocôndrias/fisiologia , Organelas
5.
PLoS Genet ; 14(4): e1007294, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652885

RESUMO

Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway. Here, we analyze the role of SdrG and investigate an alternative function of the membrane-bound PhyP (here re-designated PhyT), previously assumed to act as a PhyR phosphatase. In vitro assays show that PhyT transfers a phosphoryl group from SdrG to PhyR via phosphoryl transfer on a conserved His residue. This finding, as well as complementary GSR reporter assays, indicate the participation of SdrG and PhyT in a Pak-SdrG-PhyT-PhyR phosphorelay. Furthermore, we demonstrate complex formation between PhyT and PhyR. This finding is substantiated by PhyT-dependent membrane association of PhyR in unstressed cells, while the response regulator is released from the membrane upon stress induction. Our data support a model in which PhyT sequesters PhyR, thereby favoring Pak-dependent phosphorylation of SdrG. In addition, PhyT assumes the role of the SdrG-phosphotransferase to activate PhyR. Our results place SdrG into the GSR signaling cascade and uncover a dual role of PhyT in the GSR.


Assuntos
Fosfotransferases/metabolismo , Transdução de Sinais , Sphingomonas/enzimologia , Estresse Fisiológico , Fosforilação
6.
Trends Cell Biol ; 34(2): 83-84, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38135636

RESUMO

Mitochondria are activated during stem cell differentiation. Recently, Wang et al. found that mechanical stimulation from tissue surrounding differentiating germ cells in the female fly ovary is necessary to sustain intracellular calcium levels, promoting mitochondrial activity. This suggests a molecular link between cell mechanics and developmental metabolic transitions in eukaryotes.


Assuntos
Células Germinativas , Ovário , Feminino , Animais , Células Germinativas/metabolismo , Ovário/metabolismo , Diferenciação Celular , Mitocôndrias/metabolismo
7.
Nat Microbiol ; 9(1): 136-149, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172620

RESUMO

In healthy plants, the innate immune system contributes to maintenance of microbiota homoeostasis, while disease can be associated with microbiome perturbation or dysbiosis, and enrichment of opportunistic plant pathogens like Xanthomonas. It is currently unclear whether the microbiota change occurs independently of the opportunistic pathogens or is caused by the latter. Here we tested if protein export through the type-2 secretion system (T2SS) by Xanthomonas causes microbiome dysbiosis in Arabidopsis thaliana in immunocompromised plants. We found that Xanthomonas strains secrete a cocktail of plant cell wall-degrading enzymes that promote Xanthomonas growth during infection. Disease severity and leaf tissue degradation were increased in A. thaliana mutants lacking the NADPH oxidase RBOHD. Experiments with gnotobiotic plants, synthetic bacterial communities and wild-type or T2SS-mutant Xanthomonas revealed that virulence and leaf microbiome composition are controlled by the T2SS. Overall, a compromised immune system in plants can enrich opportunistic pathogens, which damage leaf tissues and ultimately cause microbiome dysbiosis by facilitating growth of specific commensal bacteria.


Assuntos
Microbiota , Sistemas de Secreção Tipo II , Xanthomonas , Xanthomonas/genética , Disbiose , Folhas de Planta
8.
ACS Synth Biol ; 11(10): 3388-3396, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36194551

RESUMO

Endosymbioses are cellular mergers in which one cell lives within another cell and have led to major evolutionary transitions, most prominently to eukaryogenesis. Generation of synthetic endosymbioses aims to provide a defined starting point for studying fundamental processes in emerging endosymbiotic systems and enable the engineering of cells with novel properties. Here, we tested the potential of different bacteria for artificial endosymbiosis in mammalian cells. To this end, we adopted the fluidic force microscopy technology to inject diverse bacteria directly into the cytosol of HeLa cells and examined the endosymbiont-host interactions by real-time fluorescence microscopy. Among them, Escherichia coli grew exponentially within the cytoplasm, however, at a faster pace than its host cell. To slow down the intracellular growth of E. coli, we introduced auxotrophies in E. coli and demonstrated that the intracellular growth rate can be reduced by limiting the uptake of aromatic amino acids. In consequence, the survival of the endosymbiont-host pair was prolonged. The presented experimental framework enables studying endosymbiotic candidate systems at high temporal resolution and at the single cell level. Our work represents a starting point for engineering a stable, vertically inherited endosymbiosis.


Assuntos
Escherichia coli , Simbiose , Animais , Humanos , Escherichia coli/genética , Células HeLa , Evolução Biológica , Bactérias , Aminoácidos Aromáticos , Mamíferos
9.
Nat Commun ; 13(1): 2836, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595740

RESUMO

Differences between species promote stable coexistence in a resource-limited environment. These differences can result from interspecies competition leading to character shifts, a process referred to as character displacement. While character displacement is often interpreted as a consequence of genetically fixed trait differences between species, it can also be mediated by phenotypic plasticity in response to the presence of another species. Here, we test whether phenotypic plasticity leads to a shift in proteome allocation during co-occurrence of two bacterial species from the abundant, leaf-colonizing families Sphingomonadaceae and Rhizobiaceae in their natural habitat. Upon mono-colonizing of the phyllosphere, both species exhibit specific and shared protein functions indicating a niche overlap. During co-colonization, quantitative differences in the protein repertoire of both bacterial populations occur as a result of bacterial coexistence in planta. Specifically, the Sphingomonas strain produces enzymes for the metabolization of xylan, while the Rhizobium strain reprograms its metabolism to beta-oxidation of fatty acids fueled via the glyoxylate cycle and adapts its biotin acquisition. We demonstrate the conditional relevance of cross-species facilitation by mutagenesis leading to loss of fitness in competition in planta. Our results show that dynamic character displacement and niche facilitation mediated by phenotypic plasticity can contribute to species coexistence.


Assuntos
Evolução Biológica , Simbiose , Adaptação Fisiológica , Ecossistema , Humanos , Fenótipo , Simbiose/genética
10.
Commun Biol ; 5(1): 180, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233064

RESUMO

The direct delivery of molecules and the sampling of endogenous compounds into and from living cells provide powerful means to modulate and study cellular functions. Intracellular injection and extraction remain challenging for fungal cells that possess a cell wall. The most common methods for intracellular delivery into fungi rely on the initial degradation of the cell wall to generate protoplasts, a step that represents a major bottleneck in terms of time, efficiency, standardization, and cell viability. Here, we show that fluidic force microscopy enables the injection of solutions and cytoplasmic fluid extraction into and out of individual fungal cells, including unicellular model yeasts and multicellular filamentous fungi. The approach is strain- and cargo-independent and opens new opportunities for manipulating and analyzing fungi. We also perturb individual hyphal compartments within intact mycelial networks to study the cellular response at the single cell level.


Assuntos
Fungos , Hifas , Parede Celular/metabolismo , Fungos/fisiologia , Micélio , Leveduras
11.
ACS Chem Biol ; 13(11): 3049-3053, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30335949

RESUMO

We here present a method that combines genetic code expansion with CRISPR/Cas9 genome engineering to label endogenously expressed proteins with high spatiotemporal resolution. The method exploits the use of an orthogonal tRNA/tRNA synthetase pair in conjugation with noncanonical amino acids to create stop codon read through events. To demonstrate the functionality of the method, we pulse labeled endogenous ß-actin and tumor protein p53 with a minimally invasive HA tag at their C-termini. Targeting the protein label with a proximity ligation assay plus real time imaging facilitates seamless quantification of the protein synthesis rate and spatial localization at the single cell level. The presented approach does not interfere with any physiological control of cellular expression, nor did we observe any perturbation of endogenous protein functions.


Assuntos
Actinas/metabolismo , Sistemas CRISPR-Cas/genética , Códon de Terminação , Lisina-tRNA Ligase/metabolismo , Engenharia de Proteínas/métodos , Proteína Supressora de Tumor p53/metabolismo , Actinas/genética , Engenharia Genética/métodos , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Proteínas Luminescentes/genética , Lisina/análogos & derivados , Lisina/genética , Lisina-tRNA Ligase/genética , Methanosarcina barkeri/enzimologia , Microscopia de Fluorescência , Fragmentos de Peptídeos/genética , RNA de Transferência/genética , Proteína Supressora de Tumor p53/genética , Proteína Vermelha Fluorescente
12.
ACS Synth Biol ; 3(12): 986-9, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25524106

RESUMO

The ability to control mammalian genes in a synergistic mode using synthetic transcription factors is highly desirable in fields of tissue engineering, stem cell reprogramming and fundamental research. In this study, we developed a standardized toolkit utilizing an engineered CRISPR/Cas9 system that enables customizable gene regulation in mammalian cells. The RNA-guided dCas9 protein was implemented as a programmable transcriptional activator or repressor device, including targeting of endogenous loci. For facile assembly of single or multiple CRISPR RNAs, our toolkit comprises a modular RNAimer plasmid, which encodes the required noncoding RNA components.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Regulação da Expressão Gênica/genética , Engenharia Genética/métodos , Células HEK293 , Humanos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa