Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 29(15): 23381-23392, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614604

RESUMO

In optical communications, space-division multiplexing is a promising strategy to augment the fiber network capacity. It relies on modern fiber designs that support the propagation of multiple spatial modes. One of these fibers, the ring-core fiber (RCF), is able to propagate modes that carry orbital angular momentum (OAM), and has been shown to enhance not only classical but also quantum communication systems. Typically, the RCF spatial modes are used as orthogonal transmission channels for data streams that are coupled into the fiber using different free space beams. Free space beams commonly used are Laguerre-Gaussian (LG) and perfect vortex (PV) beams. Here, we study the optimal conditions to multiplex information into ring-core fibers in this scheme. We study the beam coupling efficiency using the overlap between free space beams and RCF bound beams and determine which are the most relevant LG beams to be considered and how their coupling efficiency can be maximized by properly adjusting the beam width with respect to the fiber parameters. Our results show that the coupling efficiency depends upon the OAM value and that this can limit the achievable transmission rates in SDM systems. In this regard, we find optimal coupling configurations for LG beams based on the RCF fiber and beam parameters. Further, we study the PV beam that allows for nearly perfect coupling efficiencies for all spatial modes supported by these fibers. PV beams present higher coupling efficiencies than LG beams and negligible dependence on the OAM value, thus offering an attractive solution to multiplex high counts of OAM channels from free space into a ring-core fiber using a single coupling configuration.

2.
Phys Rev Lett ; 117(26): 260401, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059533

RESUMO

Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.

3.
Phys Rev Lett ; 113(9): 090404, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25215966

RESUMO

Kochen-Specker (KS) sets are key tools for proving some fundamental results in quantum theory and also have potential applications in quantum information processing. However, so far, their intrinsic complexity has prevented experimentalists from using them for any application. The KS set requiring the smallest number of contexts has been recently found. Relying on this simple KS set, here we report an input state-independent experimental technique to certify whether a set of measurements is actually accessing a preestablished quantum six-dimensional space encoded in the transverse momentum of single photons.

4.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374791

RESUMO

Considering pure quantum states, entanglement concentration is the procedure where, from N copies of a partially entangled state, a single state with higher entanglement can be obtained. Obtaining a maximally entangled state is possible for N=1. However, the associated success probability can be extremely low when increasing the system's dimensionality. In this work, we study two methods to achieve a probabilistic entanglement concentration for bipartite quantum systems with a large dimensionality for N=1, regarding a reasonably good probability of success at the expense of having a non-maximal entanglement. Firstly, we define an efficiency function Q considering a tradeoff between the amount of entanglement (quantified by the I-Concurrence) of the final state after the concentration procedure and its success probability, which leads to solving a quadratic optimization problem. We found an analytical solution, ensuring that an optimal scheme for entanglement concentration can always be found in terms of Q. Finally, a second method was explored, which is based on fixing the success probability and searching for the maximum amount of entanglement attainable. Both ways resemble the Procrustean method applied to a subset of the most significant Schmidt coefficients but obtaining non-maximally entangled states.

5.
Sci Rep ; 12(1): 17312, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243767

RESUMO

The problem of non-orthogonal state discrimination underlies crucial quantum information tasks, such as cryptography and computing protocols. Therefore, it is decisive to find optimal scenarios for discrimination among quantum states. We experimentally investigate the strategy for the optimal discrimination of two non-orthogonal states considering a fixed rate of inconclusive outcomes (FRIO). The main advantage of the FRIO strategy is to interpolate between unambiguous and minimum error discrimination by solely adjusting the rate of inconclusive outcomes. We present a versatile experimental scheme that performs the optimal FRIO measurement for any pair of generated non-orthogonal states with arbitrary a priori probabilities and any fixed rate of inconclusive outcomes. Considering different values of the free parameters in the FRIO protocol, we implement it upon qubit states encoded in the polarization mode of single photons generated in the spontaneous parametric down-conversion process. Moreover, we resort to a newfangled double-path Sagnac interferometer to perform a three-outcome non-projective measurement required for the discrimination task, showing excellent agreement with the theoretical prediction. This experiment provides a practical toolbox for a wide range of quantum state discrimination strategies using the FRIO scheme, which can significantly benefit quantum information applications and fundamental studies in quantum theory.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa