Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(26): 266801, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28059526

RESUMO

Certain nonuniform strain applied to graphene flakes has been shown to induce pseudo-Landau levels in the single-particle spectrum, which can be rationalized in terms of a pseudomagnetic field for electrons near the Dirac points. However, this Landau level structure is, in general, approximate and restricted to low energies. Here, we introduce a family of strained bipartite tight-binding models in arbitrary spatial dimension d and analytically prove that their entire spectrum consists of perfectly degenerate pseudo-Landau levels. This construction generalizes the case of triaxial strain on graphene's honeycomb lattice to arbitrary d; in d=3, our model corresponds to tetraxial strain on the diamond lattice. We discuss general aspects of pseudo-Landau levels in arbitrary d.

2.
Nat Commun ; 14(1): 4009, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419912

RESUMO

Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.


Assuntos
Hidrogênio , Prótons , Lasers , Aceleradores de Partículas , Aceleração
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa