Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447904

RESUMO

This paper investigates the effect of decorating graphene with zinc oxide (ZnO) nanoparticles (NPs) for the detection of NO2. In this regard, two graphene sensors with different ZnO loadings of 5 wt.% and 20 wt.% were prepared, and their responses towards NO2 at room temperature and different conditions were compared. The experimental results demonstrate that the graphene loaded with 5 wt.% ZnO NPs (G95/5) shows better performance at detecting low concentrations of the target gas than the one loaded with 20 wt.% ZnO NPs (G80/20). Moreover, measurements under dry and humid conditions of the G95/5 sensor revealed that the material is very sensitive to ambient moisture, showing an almost eight-fold increase in NO2 sensitivity when the background changes from dry to 70% relative humidity. Regarding sensor selectivity, it presents a significant selectivity towards NO2 compared to other gas compounds.


Assuntos
Grafite , Nanopartículas , Óxido de Zinco , Dióxido de Nitrogênio
2.
Appl Opt ; 60(15): 4477-4484, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34143141

RESUMO

The dielectric function of ${{\rm{VO}}_x}$ and ${{\rm{V}}_2}{{\rm{O}}_5}$ thin films is determined with the use of a spectroscopic Mueller matrix ellipsometer from 1.5 to 5.0 eV. The complex dielectric function of the films is calculated using the measured Mueller matrices filtered with the Cloude decomposition. ${{\rm{VO}}_x}$ shows high absorption in the UV region, a Tauc-Lorentz gap around 2.4 eV, and non-vanishing absorption in the visible. ${{\rm{V}}_2}{{\rm{O}}_5}$ shows a high absorption band centered at 2.87 eV, an indirect optical band gap at 1.95 eV, and a direct optical band gap at 2.33 eV. The ellipsometric characterization is supported by Raman, x-ray photoelectron, and photoluminescence spectroscopy.

3.
Phys Chem Chem Phys ; 17(33): 21525-32, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26219752

RESUMO

Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications.


Assuntos
Ouro/química , Nanofios/química , Óxido de Zinco/química , Catálise , Teoria Quântica
4.
ACS Sustain Chem Eng ; 12(11): 4365-4374, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38516399

RESUMO

In this work, we studied new materials free of noble metals that are active in photocatalytic H2 generation from ethanol aqueous solutions (EtOHaq), which can be obtained from biomass. MoxC/g-C3N4 photocatalysts containing hexagonal (hcp) Mo2C and/or cubic (fcc) MoC nanoparticles on g-C3N4 nanosheets were prepared, characterized, and evaluated for photocatalytic hydrogen production from EtOHaq (25% v/v). Tailored MoxC/g-C3N4 nanocomposites with MoxC crystallite sizes in the 4-37 nm range were prepared by treatment with ultrasound of dispersions containing MoxC and g-C3N4 nanosheets, formerly synthesized. The characterization of the resulting nanocomposites, MoxC/g-C3N4, by different techniques, including photoelectrochemical measurements, allowed us to relate the photocatalytic performance of materials with the characteristics of the MoxC phase integrated onto g-C3N4. The samples containing smaller hcp Mo2C crystallites showed better photocatalytic performance. The most performant nanocomposite contained nanoparticles of both hcp Mo2C and fcc MoC and produced 27.9 mmol H2 g-1 Mo; this sample showed the lowest recombination of photogenerated charges, the highest photocurrent response, and the lowest electron transfer resistance, which can be related to the presence of MoC-Mo2C heterojunctions. Moreover, this material allows for easy reusability. This work provides new insights for future research on noble-metal-free g-C3N4-based photocatalysts.

5.
ChemSusChem ; : e202401256, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378399

RESUMO

The electrochemical glucose oxidation reaction (GOR) presents an opportunity to produce hydrogen and high-value chemical products. Herein, we investigate the effect of Sn in Ni nanoparticles for the GOR to formic acid (FA). Electrochemical results show that the maximum activity is related to the amount of Ni, as Ni sites are responsible for catalyzing GOR via the NiOOH/Ni(OH)2 pair. However, the GOR kinetics increases with the amount of Sn, associated with an enhancement of the OH- supply to the catalyst surface for Ni(OH)2 reoxidation to NiOOH. NiSn nanoparticles supported on carbon nanotubes (NiSn/CNT) exhibit excellent current densities and direct GOR via C-C cleavage mechanism, obtaining FA with a Faradaic efficiency (FE) of 93% at 1.45 V vs. reversible hydrogen electrode. GOR selectivity is further studied by varying the applied potential, glucose concentration, reaction time, and temperature. FE toward FA production decreases due to formic overoxidation to carbonates at low glucose concentrations and high applied potentials, while acetic and lactic acids are obtained with high selectivity at high glucose concentrations and 55 °C. Density functional theory calculations show that the SnO2 facilitates the adsorption of glucose on the surface of Ni and promotes the formation of the catalytic active Ni3+ species.

6.
Nanotechnology ; 22(23): 235403, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21474865

RESUMO

Highly ordered TiO(2) nanohole layers were synthesized by anodic oxidation of titanium foils using ethylene glycol and ammonium fluoride as the electrolyte. The effectiveness of different methods, namely annealing at 500 °C in NH(3) and in H(2) diluted in N(2), to incorporate nitrogen into TiO(2) and thus extend its photoelectrochemical (PEC) activity to the visible range was studied. The intra-gap levels introduced by both processes were identified by means of XPS and PL measurements. Water splitting experiments demonstrated that annealing in H(2) improved the photocatalytic activity of pure TiO(2), while annealing in ammonia led to a decrease in the PEC performance.

7.
Nanomaterials (Basel) ; 11(4)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805496

RESUMO

Vapor-liquid-solid processes allow growing high-quality nanowires from a catalyst. An alternative to the conventional use of catalyst thin films, colloidal nanoparticles offer advantages not only in terms of cost, but also in terms of controlling the location, size, density, and morphology of the grown nanowires. In this work, we report on the influence of different parameters of a colloidal Au nanoparticle suspension on the catalyst-assisted growth of ZnO nanostructures by a vapor-transport method. Modifying colloid parameters such as solvent and concentration, and growth parameters such as temperature, pressure, and Ar gas flow, ZnO nanowires, nanosheets, nanotubes and branched-nanowires can be grown over silica on silicon and alumina substrates. High-resolution transmission electron microscopy reveals the high-crystal quality of the ZnO nanostructures obtained. The photoluminescence results show a predominant emission in the ultraviolet range corresponding to the exciton peak, and a very broad emission band in the visible range related to different defect recombination processes. The growth parameters and mechanisms that control the shape of the ZnO nanostructures are here analyzed and discussed. The ZnO-branched nanowires were grown spontaneously through catalyst migration. Furthermore, the substrate is shown to play a significant role in determining the diameters of the ZnO nanowires by affecting the surface mobility of the metal nanoparticles.

8.
Nanomaterials (Basel) ; 10(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365564

RESUMO

One-dimensional ZnO nanostructures (nanowires/nanorods) are attractive materials for applications such as gas sensors, biosensors, solar cells, and photocatalysts. This is due to the relatively easy production process of these kinds of nanostructures with excellent charge carrier transport properties and high crystalline quality. In this work, we review the photoluminescence (PL) properties of single and collective ZnO nanowires and nanorods. As different growth techniques were obtained for the presented samples, a brief review of two popular growth methods, vapor-liquid-solid (VLS) and hydrothermal, is shown. Then, a discussion of the emission process and characteristics of the near-band edge excitonic emission (NBE) and deep-level emission (DLE) bands is presented. Their respective contribution to the total emission of the nanostructure is discussed using the spatial information distribution obtained by scanning transmission electron microscopy-cathodoluminescence (STEM-CL) measurements. Also, the influence of surface effects on the photoluminescence of ZnO nanowires, as well as the temperature dependence, is briefly discussed for both ultraviolet and visible emissions. Finally, we present a discussion of the size reduction effects of the two main photoluminescent bands of ZnO. For a wide emission (near ultra-violet and visible), which has sometimes been attributed to different origins, we present a summary of the different native point defects or trap centers in ZnO as a cause for the different deep-level emission bands.

9.
Front Chem ; 8: 604092, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33604326

RESUMO

The vapor-liquid-solid (VLS) process was applied to fabricate zinc oxide nanowires (ZnO NWs) with a different aspect ratio (AR), morphological, and optical properties. The ZnO NWs were grown on a system that contains a quartz substrate with transparent conductive oxide (TCO) thin film followed by an Al-doped ZnO (AZO) seed layer; both films were grown by magnetron sputtering at room temperature. It was found that the ZnO NWs presented high crystalline quality and vertical orientation from different structural and morphological characterizations. Also, NWs showed a good density distribution of 69 NWs/µm2 with a different AR that offers their capability to be used as possible photoelectrode (anode) in potential future device applications. The samples optical properties were studied using various techniques such as photoluminescence (PL), absorption, and transmittance before and after sensitization with N719 dye. The results demonstrated that NW with 30 nm diameter had the best characteristics as feasible photoelectrode (anode) (high absorption, minimum recombination, high crystallinity). Also, the present samples optical properties were found to be improved due to the existence of N719 dye and Au nanoparticles on the tip of NWs. NWs grown in this work can be used in different photonic and optoelectronic applications.

10.
Nanoscale ; 4(5): 1620-6, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286103

RESUMO

For good performance of photonic devices whose working principle is based on the enhancement of electromagnetic fields obtained by confining light into dielectric resonators with dimensions in the nanometre length scale, a detailed knowledge of the optical mode structure becomes essential. However, this information is usually lacking and can only be indirectly obtained by conventional spectroscopic techniques. Here we unraveled the influence of wire size, incident wavelength, degree of polarization and the presence of a substrate on the optical near fields generated by cavity modes of individual hexagonal ZnO nanowires by combining scanning near-field optical microscopy (SNOM) with electrodynamics calculations within the discrete dipole approximation (DDA). The near-field patterns obtained with very high spatial resolution, better than 50 nm, exhibit striking size and spatial-dispersion effects, which are well accounted for within DDA, using a wavevector-dependent dipolar interaction and considering the dielectric anisotropy of ZnO. Our results show that both SNOM and DDA simulations are powerful tools for the design of optoelectronic devices able to manipulate light at the nanoscale.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa