Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 176(4): 790-804.e13, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661759

RESUMO

The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing ß cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just ß cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and ß cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Morfogênese , Pâncreas/citologia
2.
Cell ; 159(2): 428-39, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25303535

RESUMO

The generation of insulin-producing pancreatic ß cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide ß cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive ß cells from hPSC in vitro. These stem-cell-derived ß cells (SC-ß) express markers found in mature ß cells, flux Ca(2+) in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult ß cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.


Assuntos
Técnicas de Cultura de Células , Células Secretoras de Insulina/citologia , Animais , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/genética , Insulina/metabolismo , Ilhotas Pancreáticas , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
3.
Nature ; 569(7756): 368-373, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068696

RESUMO

In vitro differentiation of human stem cells can produce pancreatic ß-cells; the loss of this insulin-secreting cell type underlies type 1 diabetes. Here, as a step towards understanding this differentiation process, we report the transcriptional profiling of more than 100,000 human cells undergoing in vitro ß-cell differentiation, and describe the cells that emerged. We resolve populations that correspond to ß-cells, α-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population that resembles enterochromaffin cells. We show that endocrine cells maintain their identity in culture in the absence of exogenous growth factors, and that changes in gene expression associated with in vivo ß-cell maturation are recapitulated in vitro. We implement a scalable re-aggregation technique to deplete non-endocrine cells and identify CD49a (also known as ITGA1) as a surface marker of the ß-cell population, which allows magnetic sorting to a purity of 80%. Finally, we use a high-resolution sequencing time course to characterize gene-expression dynamics during the induction of human pancreatic endocrine cells, from which we develop a lineage model of in vitro ß-cell differentiation. This study provides a perspective on human stem-cell differentiation, and will guide future endeavours that focus on the differentiation of pancreatic islet cells, and their applications in regenerative medicine.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina/citologia , Células-Tronco/citologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Separação Celular , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/classificação , Células Secretoras de Insulina/metabolismo , Integrina alfa1/metabolismo , Masculino , Camundongos , RNA-Seq , Análise de Célula Única , Células-Tronco/metabolismo
4.
Nat Commun ; 7: 11463, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27163171

RESUMO

We recently reported the scalable in vitro production of functional stem cell-derived ß-cells (SC-ß cells). Here we extend this approach to generate the first SC-ß cells from type 1 diabetic patients (T1D). ß-cells are destroyed during T1D disease progression, making it difficult to extensively study them in the past. These T1D SC-ß cells express ß-cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of ß-cell stress. Using these assays, we find no major differences in T1D SC-ß cells compared with SC-ß cells derived from non-diabetic patients. These results show that T1D SC-ß cells could potentially be used for the treatment of diabetes, drug screening and the study of ß-cell biology.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Células Secretoras de Insulina/patologia , Animais , Diferenciação Celular , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Humanos , Hipoglicemiantes/farmacologia , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Camundongos SCID , Transplante de Células-Tronco
5.
Nat Med ; 22(3): 306-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808346

RESUMO

The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in individuals with diabetes. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically, but these approaches are limited by the adverse effects of immunosuppressive therapy over the lifetime of the recipient and the limited supply of donor tissue. The latter concern may be addressed by recently described glucose-responsive mature beta cells that are derived from human embryonic stem cells (referred to as SC-ß cells), which may represent an unlimited source of human cells for pancreas replacement therapy. Strategies to address the immunosuppression concerns include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier. However, clinical implementation has been challenging because of host immune responses to the implant materials. Here we report the first long-term glycemic correction of a diabetic, immunocompetent animal model using human SC-ß cells. SC-ß cells were encapsulated with alginate derivatives capable of mitigating foreign-body responses in vivo and implanted into the intraperitoneal space of C57BL/6J mice treated with streptozotocin, which is an animal model for chemically induced type 1 diabetes. These implants induced glycemic correction without any immunosuppression until their removal at 174 d after implantation. Human C-peptide concentrations and in vivo glucose responsiveness demonstrated therapeutically relevant glycemic control. Implants retrieved after 174 d contained viable insulin-producing cells.


Assuntos
Alginatos , Glicemia/metabolismo , Peptídeo C/metabolismo , Transplante de Células/métodos , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Células-Tronco Embrionárias/citologia , Reação a Corpo Estranho/prevenção & controle , Hidrogéis , Células Secretoras de Insulina/transplante , Animais , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular , Cromatografia Líquida , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Humanos , Imunocompetência , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Contraste de Fase , Morfolinas , Polímeros , Espectrometria de Massas em Tandem , Triazóis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa