Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2356179, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38864179

RESUMO

We present a new computational approach, named Watermelon, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the Watermelon approach.


Assuntos
Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/química , Ligantes , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Citrullus/química
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139062

RESUMO

Glycogen synthase kinase-3 beta (GSK3ß) is a serine/threonine kinase that plays key roles in glycogen metabolism, Wnt/ß-catenin signaling cascade, synaptic modulation, and multiple autophagy-related signaling pathways. GSK3ß is an attractive target for drug discovery since its aberrant activity is involved in the development of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In the present study, multiple machine learning models aimed at identifying novel GSK3ß inhibitors were developed and evaluated for their predictive reliability. The most powerful models were combined in a consensus approach, which was used to screen about 2 million commercial compounds. Our consensus machine learning-based virtual screening led to the identification of compounds G1 and G4, which showed inhibitory activity against GSK3ß in the low-micromolar and sub-micromolar range, respectively. These results demonstrated the reliability of our virtual screening approach. Moreover, docking and molecular dynamics simulation studies were employed for predicting reliable binding modes for G1 and G4, which represent two valuable starting points for future hit-to-lead and lead optimization studies.


Assuntos
Via de Sinalização Wnt , Simulação de Acoplamento Molecular , Consenso , Glicogênio Sintase Quinase 3 beta , Reprodutibilidade dos Testes
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768458

RESUMO

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Assuntos
Sítio Alostérico , Humanos , Ligantes , Receptores de Canabinoides , Regulação Alostérica
4.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771023

RESUMO

Plant secondary metabolites, known as phytochemicals, have recently gained much attention in light of the "circular economy", to reutilize waste products deriving from agriculture and food industry. Phytochemicals are known for their onco-preventive and chemoprotective effects, among several other beneficial properties. Apple phytochemicals have been extensively studied for their effectiveness in a wide range of diseases, cancer included. This review aims to provide a thorough overview of the main studies reported in the literature concerning apple phytochemicals, mostly polyphenols, in cancer prevention. Although there are many different mechanisms targeted by phytochemicals, the Nrf2 and NF-κB signaling pathways are the ones this review will be focused on, highlighting also the existing crosstalk between these two systems.


Assuntos
Malus , Neoplasias , Humanos , NF-kappa B/metabolismo , Malus/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Neoplasias/prevenção & controle , Neoplasias/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
5.
Molecules ; 28(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049725

RESUMO

The present paper reports a sustainable raw material obtained from the by-products derived from the industrial production of bergamot (Citrus × Bergamia Risso & Poiteau) essential oils. The procedure to obtain the raw material is designed to maintain as much of the bioactive components as possible and to avoid expensive chemical purification. It consists of spray-drying the fruit juice obtained by squeezing the fruits, which is mixed with the aqueous extract of the pulp, i.e., the solid residue remained after fruit pressing. The resulting powder bergamot juice (PBJ) contains multiple bioactive components, in particular, among others, soluble fibers, polyphenols and amino-acid betaines, such as stachydrine and betonicine. LC-MS analysis identified 86 compounds, with hesperetin, naringenin, apigenin and eridictyol glucosides being the main components. In the second part of the paper, dose-dependent anti-inflammatory activity of PBJ and of stachydrine was found, but neither of the compounds were effective in activating Nrf2. PBJ was then found to be effective in an in vivo model of a metabolic syndrome induced by a high-sugar, high-fat (HSF) diet and evidenced by a significant increase of the values related to a set of parameters: blood glucose, triglycerides, insulin resistance, systolic blood pressure, visceral adipose tissue and adiposity index. PBJ, when given to control rats, did not significantly change these values; in contrast, they were found to be greatly affected in rats receiving an HSF diet. The in vivo effect of PBJ can be ascribed not only to bergamot polyphenols with well-known anti-inflammatory, antioxidant and lipid-regulating effects, but also to the dietary fibers and to the non-phenolic constituents, such as stachydrine. Moreover, since PBJ was found to affect energy homeostasis and to regulate food intake, a mechanism on the regulation of energy homeostasis through leptin networking should also be considered and deserves further investigation.


Assuntos
Citrus , Óleos Voláteis , Animais , Ratos , Óleos Voláteis/farmacologia , Polifenóis/farmacologia , Polifenóis/química , Compostos Fitoquímicos/farmacologia , Espectrometria de Massas , Citrus/química , Anti-Inflamatórios/farmacologia
6.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566369

RESUMO

1,8-naphthyridine-3-carboxamide structures were previously identified as a promising scaffold from which to obtain CB2R agonists with anticancer and anti-inflammatory activity. This work describes the synthesis and functional characterization of new 1,8-naphthyridin-2(1H)-one-3-carboxamides with high affinity and selectivity for CB2R. The new compounds were able to pharmacologically modulate the cAMP response without modulating CB2R-dependent ß-arrestin2 recruitment. These structures were also evaluated for their anti-cancer activity against SH-SY5Y and SK-N-BE cells. They were able to reduce the cell viability of both neuroblastoma cancer cell lines with micromolar potency (IC50 of FG158a = 11.8 µM and FG160a = 13.2 µM in SH-SY5Y cells) by a CB2R-mediated mechanism. Finally, in SH-SY5Y cells one of the newly synthesized compounds, FG158a, was able to modulate ERK1/2 expression by a CB2R-mediated effect, thus suggesting that this signaling pathway might be involved in its potential anti-cancer effect.


Assuntos
Canabinoides , Neuroblastoma , Agonistas de Receptores de Canabinoides/química , Sobrevivência Celular , Humanos , Neuroblastoma/tratamento farmacológico , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
7.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500411

RESUMO

A multidisciplinary investigation on Achillea moschata Wulfen (Asteraceae) is outlined herein. This work, part of the European Interreg Italy-Switzerland B-ICE project, originated from an ethnobotanical survey performed in Chiesa in Valmalenco (Sondrio, Lombardy, Northern Italy) in 2019-2021 which highlighted this species' relevance of use in folk medicine to treat gastrointestinal diseases. In addition, this contribution included analyses of the: (a) phytochemical profile of the aqueous and methanolic extracts of the dried flower heads using LC-MS/MS; (b) morpho-anatomy and histochemistry of the vegetative and reproductive organs through Light, Fluorescence, and Scanning Electron Microscopy; (c) biological activity of the aqueous extract concerning the antioxidant and anti-inflammatory potential through cell-based in vitro models. A total of 31 compounds (5 phenolic acids, 13 flavonols, and 13 flavones) were detected, 28 of which included in both extracts. Covering and secreting trichomes were observed: the biseriate 10-celled glandular trichomes prevailing on the inflorescences represented the main sites of synthesis of the polyphenols and flavonoids detected in the extracts, along with volatile terpenoids. Finally, significant antioxidant and anti-inflammatory activities of the aqueous extract were documented, even at very low concentrations; for the first time, the in vitro tests allowed us to formulate hypotheses about the mechanism of action. This work brings an element of novelty due to the faithful reproduction of the traditional aqueous preparation and the combination of phytochemical and micromorphological research approaches.


Assuntos
Achillea , Achillea/química , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/farmacologia
8.
Pharmacol Res ; 170: 105607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34089867

RESUMO

In the last decades, cannabinoid receptor 2 (CB2R) has continued to receive attention as a key therapeutic target in neuroprotection. Indeed, several findings highlight the neuroprotective effects of CB2R through suppression of both neuronal excitability and reactive microglia. Additionally, CB2R seems to be a more promising target than cannabinoid receptor 1 (CB1R) thanks to the lack of central side effects, its lower expression levels in the central nervous system (CNS), and its inducibility, since its expression enhances quickly in the brain following pathological conditions. This review aims to provide a thorough overview of the main natural and synthetic selective CB2R modulators, their chemical classification and their potential therapeutic usefulness in neuroprotection, a crucial aspect for the treatment of neurodegenerative diseases.


Assuntos
Encéfalo/efeitos dos fármacos , Endocanabinoides/metabolismo , Degeneração Neural , Doenças Neurodegenerativas/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptor CB2 de Canabinoide/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Ligantes , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais
9.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830256

RESUMO

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Endocanabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Metástase Neoplásica , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
10.
Molecules ; 27(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011295

RESUMO

The endocannabinoid system (ECS) exerts immunosuppressive effects, which are mostly mediated by cannabinoid receptor 2 (CBR2), whose expression on leukocytes is higher than CBR1, mainly localized in the brain. Targeted CBR2 activation could limit inflammation, avoiding CBR1-related psychoactive effects. Herein, we evaluated in vitro the biological activity of a novel, selective and high-affinity CBR2 agonist, called JT11, studying its potential CBR2-mediated anti-inflammatory effect. Trypan Blue and MTT assays were used to test the cytotoxic and anti-proliferative effect of JT11 in Jurkat cells. Its pro-apoptotic activity was investigated analyzing both cell cycle and poly PARP cleavage. Finally, we evaluated its impact on LPS-induced ERK1/2 and NF-kB-p65 activation, TNF-α, IL-1ß, IL-6 and IL-8 release in peripheral blood mononuclear cells (PBMCs) from healthy donors. Selective CB2R antagonist SR144528 and CBR2 knockdown were used to further verify the selectivity of JT11. We confirmed selective CBR2 activation by JT11. JT11 regulated cell viability and proliferation through a CBR2-dependent mechanism in Jurkat cells, exhibiting a mild pro-apoptotic activity. Finally, it reduced LPS-induced ERK1/2 and NF-kB-p65 phosphorylation and pro-inflammatory cytokines release in human PBMCs, proving to possess in vitro anti-inflammatory properties. JT11 as CBR2 ligands could enhance ECS immunoregulatory activity and our results support the view that therapeutic strategies targeting CBR2 signaling could be promising for the treatment of chronic inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Animais , Anti-Inflamatórios/química , Apoptose/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Bioorg Med Chem ; 28(11): 115513, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32340793

RESUMO

Focusing on the importance of the free phenolic hydroxyl moiety, a family of 23 alkylresorcinol-based compounds were developed and evaluated for their cannabinoid receptor binding properties. The non-symmetrical hexylresorcinol derivative 29 turned out to be a CB2-selective competitive antagonist/inverse agonist endowed with good potency. Both the olivetol- and 5-(2-methyloctan-2-yl)resorcinol-based derivatives 23 and 24 exhibited a significant antinociceptive activity. Interestingly, compound 24 proved to be able to activate both cannabinoid and TRPV1 receptors. Even if cannabinoid receptor subtype selectivity remained a goal only partially achieved, results confirm the validity of the alkylresorcinol nucleus as skeleton for the identification of potent cannabinoid receptor modulators.


Assuntos
Amidas/farmacologia , Analgésicos/farmacologia , Receptores de Canabinoides/metabolismo , Resorcinóis/farmacologia , Amidas/síntese química , Amidas/química , Analgésicos/síntese química , Analgésicos/química , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , Estrutura Molecular , Ratos , Resorcinóis/química , Relação Estrutura-Atividade , Canais de Cátion TRPV/metabolismo
12.
Bioorg Chem ; 94: 103353, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668465

RESUMO

Several preclinical evidence indicate that the modulation of the endocannabinoid system (ECS) represents a promising therapeutic approach for different diseases. However, only few modulators of this system have reached so far an advanced stage of clinical development, mainly due to limited efficacy and CB1 receptor-dependent side effects. Those limitations might be overcome by multi-target compounds that exert pro-cannabinoid activities through the modulation of two or more targets in the ECS. This approach can offer a safer and more effective pharmacological strategy as compared to the modulation of a single target. In this work, we report the synthesis and biological characterization of new 6-aryl-1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives. Our results identified several compounds exhibiting interesting multi-target profiles within the ECS. In particular, compound B1 showed moderate-to-high affinity for cannabinoid receptors (Ki CB1R = 304 nM, partial agonist, Ki CB2R = 3.1 nM, inverse agonist) and a potent inhibition of AEA uptake (IC50 = 62 nM) with moderate inhibition of FAAH (IC50 = 2.9 µM). The corresponding 2-alkoxypyridine analogue B14 exhibited significant inhibitor activity on both FAAH (IC50 = 69 nM) and AEA uptake (IC50 = 76 nM) without significantly binding to both cannabinoid receptor subtypes. Molecular docking analysis was carried out on the three-dimensional structures of CB1R and CB2R and of FAAH to rationalize the structure-activity relationships of this series of compounds.


Assuntos
Endocanabinoides/metabolismo , Piridinas/química , Animais , Humanos , Simulação de Acoplamento Molecular , Receptores de Canabinoides/metabolismo , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 25(24): 6427-6434, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29079014

RESUMO

In this work, we explored the molecular framework of the known CB1R allosteric modulator PSNCBAM-1 with the aim to generate new bioactive analogs and to deepen the structure-activity relationships of this type of compounds. In particular, the introduction of a NH group between the pyridine ring and the phenyl nucleus generated the amino-phenyl-urea derivative SN15b that behaved as a positive allosteric modulator (PAM), increasing the CB1R binding affinity of the orthosteric ligand CP55,940. The functional activity was evaluated using serum response element (SRE) assay, which assesses the CB1R-dependent activation of the MAPK/ERK signaling pathway. SN15b and the biphenyl-urea analog SC4a significantly inhibited the response produced by CP55,940 in the low µM range, thus behaving as negative allosteric modulators (NAMs). The new derivatives presented here provide further insights about the modulation of CB1R binding and functional activity by allosteric ligands.


Assuntos
Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
14.
Nutr Cancer ; 68(5): 873-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266366

RESUMO

Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercially available, it was obtained as a pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and downregulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.


Assuntos
Aldeídos/farmacologia , Azeite de Oliva/química , Fenóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Regulação para Baixo , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
15.
Cells ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786097

RESUMO

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Assuntos
Peptídeos beta-Amiloides , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteômica , Receptor CB2 de Canabinoide , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteômica/métodos , Receptor CB2 de Canabinoide/metabolismo , Ligantes , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Autofagia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Linhagem Celular Tumoral
16.
J Clin Med ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068253

RESUMO

Alzheimer's disease (AD) is characterized by massive neuronal death, brain atrophy, and loss of neurons and synapses, which all lead to a progressive cognitive decline. Neuroinflammation has been recently identified as one of the main causes of AD progression, and microglia cells are considered to have a central role in this process. Growing evidence suggests that cannabinoids may be used as preventive treatment for AD. An altered expression of the endocannabinoids (eCBs) and their receptors (CBRs) is reported in several neurodegenerative disorders, including AD. Moreover, the modulation of CBRs demonstrated neuroprotective effects in reducing aggregated protein deposition, suggesting the therapeutic potential of natural and synthetic CBR ligands in the treatment of neurodegenerative proteinopathies. Here, we review the current knowledge regarding the involvement of CBRs in the modulation of microglia activation phenotypes, highlighting the role of neuroinflammation in the pathogenesis of neurodegenerative diseases, like AD. We also provide an overview of recently developed candidate drugs targeting CBRs that may afford a new innovative strategy for the treatment and management of AD.

17.
Front Neurol ; 14: 1169707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456655

RESUMO

Background: Stuttering is a childhood-onset neurodevelopmental disorder affecting speech fluency. The diagnosis and clinical management of stuttering is currently based on perceptual examination and clinical scales. Standardized techniques for acoustic analysis have prompted promising results for the objective assessment of dysfluency in people with stuttering (PWS). Objective: We assessed objectively and automatically voice in stuttering, through artificial intelligence (i.e., the support vector machine - SVM classifier). We also investigated the age-related changes affecting voice in stutterers, and verified the relevance of specific speech tasks for the objective and automatic assessment of stuttering. Methods: Fifty-three PWS (20 children, 33 younger adults) and 71 age-/gender-matched controls (31 children, 40 younger adults) were recruited. Clinical data were assessed through clinical scales. The voluntary and sustained emission of a vowel and two sentences were recorded through smartphones. Audio samples were analyzed using a dedicated machine-learning algorithm, the SVM to compare PWS and controls, both children and younger adults. The receiver operating characteristic (ROC) curves were calculated for a description of the accuracy, for all comparisons. The likelihood ratio (LR), was calculated for each PWS during all speech tasks, for clinical-instrumental correlations, by using an artificial neural network (ANN). Results: Acoustic analysis based on machine-learning algorithm objectively and automatically discriminated between the overall cohort of PWS and controls with high accuracy (88%). Also, physiologic ageing crucially influenced stuttering as demonstrated by the high accuracy (92%) of machine-learning analysis when classifying children and younger adults PWS. The diagnostic accuracies achieved by machine-learning analysis were comparable for each speech task. The significant clinical-instrumental correlations between LRs and clinical scales supported the biological plausibility of our findings. Conclusion: Acoustic analysis based on artificial intelligence (SVM) represents a reliable tool for the objective and automatic recognition of stuttering and its relationship with physiologic ageing. The accuracy of the automatic classification is high and independent of the speech task. Machine-learning analysis would help clinicians in the objective diagnosis and clinical management of stuttering. The digital collection of audio samples here achieved through smartphones would promote the future application of the technique in a telemedicine context (home environment).

18.
Antioxidants (Basel) ; 11(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740083

RESUMO

Enocianina is an anthocyanin-rich extract obtained from grape pomace. It is widely used as a colorant in the food industry and, in addition to anthocyanins, it also contains a variety of polyphenols. To understand whether enocianina, besides its coloring effect, may offer potential health benefit applications, we aimed to fully characterize the profile of four commercial enocianinas and assess their radical scavenging, enzymatic, antioxidant, and anti-inflammatory activities. LC-ESI-MS/MS analysis identified 90 phytochemicals. The relative content of each anthocyanin was assessed by a semi-quantitative analysis, with malvidin derivatives being the most abundant. UV-VIS spectroscopy detected total amounts of polyphenols and anthocyanins of 23% and 3.24%, respectively, indicating that anthocyanins represent a minor fraction of total polyphenols. Multiple linear regression analysis indicated that the radical scavenging activity is related to the total polyphenol content and not to anthocyanins. All four enocianinas dose-dependently activate Nrf2, and such activity was correlated with catechol-containing polyphenol content. Finally, all enocianinas showed dose-dependent anti-inflammatory activity, which at the highest concentrations tested was closely related to the total polyphenol content and was explained by radical scavenging, Nrf2 activation, and other mechanisms related to the polyphenolic components.

19.
Eur J Pharm Sci ; 169: 106088, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863873

RESUMO

The development of cannabinoid receptor type-1 (CB1R) modulators has been implicated in multiple pathophysiological events ranging from memory deficits to neurodegenerative disorders among others, even if their central psychiatric side effects such as depression, anxiety, and suicidal tendencies, have limited their clinical use. Thus, the identification of ligands which selectively act on peripheral CB1Rs, is becoming more interesting. A recent study reported a class of peripheral CB1R selective antagonists, characterized by a 5-aryl substituted nicotinamide core. These derivatives have structural similarities with the biphenyl compounds, endowed with CB2R antagonist activity, previously synthesized by our research group. In this work we combined the pharmacophoric portion of both classes, in order to obtain novel CBR antagonists. Among the synthesized compounds rather unexpectedly two compounds of this series, C7 and C10, did not show the radioligand ([3H]CP55940) displacement on CB1R but increased binding (∼ 150%), suggesting a possible allosteric behavior. Computational studies were performed to investigate the role of these compounds in CB1R modulation. The analysis of their binding poses in two different binding cavities of the CB1R surface, revealed a preferred interaction with the experimental binding site for negative allosteric modulators.


Assuntos
Niacinamida , Receptor CB1 de Canabinoide , Regulação Alostérica , Sítios de Ligação , Humanos , Ligantes
20.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36009298

RESUMO

The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10-250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa