Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS Genet ; 10(4): e1004261, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743168

RESUMO

Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.


Assuntos
Cryptococcus neoformans/genética , Genoma Fúngico/genética , RNA Fúngico/genética , Transcriptoma/genética , Virulência/genética , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Íntrons/genética
2.
Eukaryot Cell ; 13(3): 342-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24442891

RESUMO

Fungi are exposed to broadly fluctuating environmental conditions, to which adaptation is crucial for their survival. An ability to respond to a wide pH range, in particular, allows them to cope with rapid changes in their extracellular settings. PacC/Rim signaling elicits the primary pH response in both model and pathogenic fungi and has been studied in multiple fungal species. In the predominant human pathogenic fungi, namely, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans, this pathway is required for many functions associated with pathogenesis and virulence. Aspects of this pathway are fungus specific and do not exist in mammalian cells. In this review, we highlight recent advances in our understanding of PacC/Rim-mediated functions and discuss the growing interest in this cascade and its factors as potential drug targets for antifungal strategies. We focus on both conserved and distinctive features in model and pathogenic fungi, highlighting the specificities of PacC/Rim signaling in C. albicans, A. fumigatus, and C. neoformans. We consider the role of this pathway in fungal virulence, including modulation of the host immune response. Finally, as now recognized for other signaling cascades, we highlight the role of pH in adaptation to antifungal drug pressure. By acting on the PacC/Rim pathway, it may therefore be possible (i) to ensure fungal specificity and to limit the side effects of drugs, (ii) to ensure broad-spectrum efficacy, (iii) to attenuate fungal virulence, (iv) to obtain additive or synergistic effects with existing antifungal drugs through tolerance inhibition, and (v) to slow the emergence of resistant mutants.


Assuntos
Antifúngicos/farmacologia , Fungos/patogenicidade , Transdução de Sinais , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Crit Rev Microbiol ; 40(3): 187-206, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23488872

RESUMO

Yarrowia lipolytica has been developed as a production host for a large variety of biotechnological applications. Efficacy and safety studies have demonstrated the safe use of Yarrowia-derived products containing significant proportions of Yarrowia biomass (as for DuPont's eicosapentaenoic acid-rich oil) or with the yeast itself as the final product (as for British Petroleum's single-cell protein product). The natural occurrence of the species in food, particularly cheese, other dairy products and meat, is a further argument supporting its safety. The species causes rare opportunistic infections in severely immunocompromised or otherwise seriously ill people with other underlying diseases or conditions. The infections can be treated effectively by the use of regular antifungal drugs, and in some cases even disappeared spontaneously. Based on our assessment, we conclude that Y. lipolytica is a "safe-to-use" organism.


Assuntos
Biotecnologia/métodos , Indústria Farmacêutica/métodos , Microbiologia de Alimentos , Microbiologia Industrial/métodos , Yarrowia/fisiologia , Antifúngicos/uso terapêutico , Humanos , Hospedeiro Imunocomprometido , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/etiologia , Yarrowia/genética , Yarrowia/patogenicidade
4.
Genome Res ; 19(10): 1696-709, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19525356

RESUMO

Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.


Assuntos
Genoma Fúngico , Genômica/métodos , Saccharomycetales/genética , Elementos de DNA Transponíveis/genética , Elementos de DNA Transponíveis/fisiologia , Eremothecium/genética , Duplicação Gênica , Genes Fúngicos/genética , Inteínas/genética , Kluyveromyces/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , RNA não Traduzido/genética , Saccharomyces/genética , Spliceossomos/metabolismo , Zygosaccharomyces/genética
5.
FEMS Yeast Res ; 12(3): 317-31, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22188421

RESUMO

Candida alimentaria, Candida deformans, Candida galli, and Candida phangngensis have been recently reported to be the close relatives of Yarrowia lipolytica. To explore this clade of yeasts, we sequenced the mitochondrial genome (mtDNA) of these four species and compared it with the mtDNA of Y. lipolytica. The five mtDNAs exhibit a similar architecture and a high level of similarity of protein coding sequences. Genome sizes are variable, ranging from 28 017 bp in C. phangngensis to 48 508 bp in C. galli, mainly because of the variations in intron size and number. All introns are of group I, except for a group II intron inserted in the cob gene of a single species, C. galli. Putative endonuclease coding sequences were present in most group I introns, but also twice as free-standing ORFs in C. galli. Phylogenetic relationships of the five species were explored using protein alignments. No close relative of the Yarrowia clade could be identified, but protein and rRNA gene orders were partially conserved in the mtDNA of Candida salmanticensis.


Assuntos
Candida/genética , DNA Mitocondrial/genética , Genoma Mitocondrial , Yarrowia , Ordem dos Genes , Tamanho do Genoma , Íntrons/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia , Yarrowia/classificação , Yarrowia/genética
6.
Appl Microbiol Biotechnol ; 90(4): 1193-206, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21452033

RESUMO

High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.


Assuntos
Biotecnologia , Metabolismo dos Lipídeos , Leveduras/metabolismo , Fontes de Energia Bioelétrica , Fermentação , Leveduras/genética
7.
J Fungi (Basel) ; 7(8)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34436217

RESUMO

A total of 296 isolates of Saccharomyces cerevisiae sampled from naturally fermenting grape musts from various locations in Lebanon were typed by interdelta fingerprinting. Of these, 88 isolates were compared with oenological strains originating from various countries, using microsatellite characterization at six polymorphic loci. These approaches evidenced a large diversity of the natural oenological Lebanese flora over the territory as well as in individual spontaneous fermentations. Several cases of dominance and perenniality of isolates were observed in the same wineries, where fermentations appeared to involve lineages of sibling isolates. Our work thus evidenced a "winery effect" on strains' relatedness. Similarly, related or identical strains were also detected in vicinal wineries, suggesting strain circulation within small geographical areas and a further "vicinity effect". Moreover, and despite its diversity, the Lebanese flora seemed interrelated, on the basis of microsatellite loci analysis, in comparison to worldwide communities. We finally tested the ability of 21 indigenous strains to act as potential starters for winemaking. Seven of them passed our pre-selection scheme and two of them at least may be good candidates for use provided pilot-scale assays confirm their suitability.

8.
Nucleic Acids Res ; 36(18): 5832-44, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18790808

RESUMO

In eukaryotes, genes transcribed by RNA polymerase III (Pol III) carry their own internal promoters and as such, are transcribed as individual units. Indeed, a very few cases of dicistronic Pol III genes are yet known. In contrast to other hemiascomycetes, 5S rRNA genes of Yarrowia lipolytica are not embedded into the tandemly repeated rDNA units, but appear scattered throughout the genome. We report here an unprecedented genomic organization: 48 over the 108 copies of the 5S rRNA genes are located 3' of tRNA genes. We show that these peculiar tRNA-5S rRNA dicistronic genes are expressed in vitro and in vivo as Pol III transcriptional fusions without the need of the 5S rRNA gene-specific factor TFIIIA, the deletion of which displays a viable phenotype. We also report the existence of a novel putative non-coding Pol III RNA of unknown function about 70 nucleotide-long (RUF70), the 13 genes of which are devoid of internal Pol III promoters and located 3' of the 13 copies of the tDNA-Trp (CCA). All genes embedded in the various dicistronic genes, fused 5S rRNA genes, RUF70 genes and their leader tRNA genes appear to be efficiently transcribed and their products correctly processed in vivo.


Assuntos
Genes de RNAr , RNA Ribossômico 5S/genética , RNA de Transferência/genética , Fator de Transcrição TFIIIA/metabolismo , Yarrowia/genética , Sequência de Bases , Evolução Molecular , Dosagem de Genes , Expressão Gênica , Fusão Gênica , Variação Genética , Genoma Fúngico , Dados de Sequência Molecular , Fenótipo , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Ribossômico 5S/química , RNA Ribossômico 5S/metabolismo , RNA de Transferência/química , RNA de Transferência de Triptofano/genética , Fator de Transcrição TFIIIA/antagonistas & inibidores , Fator de Transcrição TFIIIA/química , Yarrowia/metabolismo
9.
FEMS Yeast Res ; 9(4): 641-62, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19385997

RESUMO

The intergenic spacer rDNA amplification and AluI fingerprinting (IGSAF) method detected four distinct groups among 170 Debaryomyces hansenii strains: D. hansenii var. hansenii; Candida famata var. famata; D. hansenii var. fabryi and C. famata var. flareri. IGS sequence comparison of representative strains showed that D. hansenii var. hansenii and C. famata var. famata belonged to one species, whereas D. hansenii var. fabryi and C. famata var. flareri belonged to two different ones. This confirmed the following three species recently reinstated: D. hansenii (=C. famata), Debaryomyces fabryi and Debaryomyces subglobosus (=Candida flareri). Accordingly, growth at 37 degrees C may no longer be used to differentiate D. hansenii from D. fabryi. Riboflavin production is more specific for D. fabryi and D. subglobosus strains. IGSAF identified all the other 17 species of the genus Debaryomyces, six of them sharing with D. hansenii an rRNA gene unit harbouring two 5S rRNA genes. The phylogenetic tree established with IGS sequences was congruent with the one based on ACT1, GPD1 and COX2 sequences depicting a distinct D. hansenii clade close to the D. subglobosus, Debaryomyces prosopidis and D. fabryi clade. Description of Debaryomyces vietnamensis sp. nov. (type strain CBS 10535(T), MUCL 51648(T)), closely related to Debaryomyces nepalensis is given.


Assuntos
Candida/classificação , Candida/genética , Impressões Digitais de DNA/métodos , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Saccharomycetales/classificação , Saccharomycetales/genética , Animais , Análise por Conglomerados , Microbiologia de Alimentos , Genótipo , Humanos , Técnicas de Tipagem Micológica , Plantas/microbiologia
10.
Microbes Infect ; 10(4): 382-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18403244

RESUMO

The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no significant differences as compared to C57BL/6 mice. In vitro production of TNF-alpha by macrophages and neutrophil recruitment were significantly inhibited in TLR2-/- mice in response to control yeast strains. Interestingly both TNF-alpha production and neutrophil recruitment in response to Deltagpi7 were significantly increased in all three types of mice, with no differences among them, and laminarin failed to inhibit this increased production of TNF-alpha. These results indicate that the enhanced proinflammatory response to Deltagpi7 does not involve recognition through TLR2, TLR4 nor dectin-1. Therefore, complete GPI anchors confer surface properties that are involved in modulation of cytokine production by macrophages in response to C. albicans.


Assuntos
Candida albicans/genética , Candida albicans/imunologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Glicosilfosfatidilinositóis/imunologia , Inflamação/imunologia , Inflamação/microbiologia , Animais , Células Cultivadas , Deleção de Genes , Glicosilfosfatidilinositóis/genética , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Cavidade Peritoneal/patologia , Análise de Sobrevida , Receptor 2 Toll-Like/deficiência , Receptor 4 Toll-Like/deficiência , Fator de Necrose Tumoral alfa/biossíntese , Virulência , Fatores de Virulência/genética , Fatores de Virulência/imunologia
11.
Fungal Genet Biol ; 45(10): 1404-14, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18765290

RESUMO

The outer layer of the Candida albicans cell wall is enriched in highly glycosylated proteins. The major class, the GlycosylPhosphatidylInositol (GPI)-anchored proteins are tethered to the wall by GPI-anchor remnants and include adhesins, glycosyltransferases, yapsins and superoxide dismutases. In silico analysis suggested that C. albicans possesses 115 putative GPI anchored proteins (GpiPs), almost twice the number reported for Saccharomyces cerevisiae. A global approach to characterise in silico predicted GpiPs has been initiated by generating a library of 45 mutants. This library was subjected to a screen for cell wall modifications by testing the cell wall integrity (SDS and Calcofluor White sensitivity) and response to caspofungin. We showed that, when caspofungin sensitivity was modified, in more than half of the cases the susceptibility can be correlated to the level of chitin and cell wall thickness: sensitive strains have low level of chitin and a thin cell wall. We also identified, for the first time, genes that when deleted lead to decreased caspofungin sensitivity: DFG5, PHR1, PGA4 and PGA62. The role of two unknown GpiPs, Pga31 and Pga62 in the cell wall structure and composition was clearly demonstrated during this study.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Equinocandinas/farmacologia , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Candida albicans/genética , Caspofungina , Parede Celular/genética , Quitina/metabolismo , Proteínas Fúngicas/genética , Lipopeptídeos
12.
Nucleic Acids Res ; 31(4): 1121-35, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12582231

RESUMO

As part of the exploratory sequencing program Génolevures, visual scrutinisation and bioinformatic tools were used to detect spliceosomal introns in seven hemiascomycetous yeast species. A total of 153 putative novel introns were identified. Introns are rare in yeast nuclear genes (<5% have an intron), mainly located at the 5' end of ORFs, and not highly conserved in sequence. They all share a clear non-random vocabulary: conserved splice sites and conserved nucleotide contexts around splice sites. Homologues of metazoan snRNAs and putative homologues of SR splicing factors were identified, confirming that the spliceosomal machinery is highly conserved in eukaryotes. Several introns' features were tested as possible markers for phylogenetic analysis. We found that intron sizes vary widely within each genome, and according to the phylogenetic position of the yeast species. The evolutionary origin of spliceosomal introns was examined by analysing the degree of conservation of intron positions in homologous yeast genes. Most introns appeared to exist in the last common ancestor of present day yeast species, and then to have been differentially lost during speciation. However, in some cases, it is difficult to exclude a possible sliding event affecting a pre-existing intron or a gain of a novel intron. Taken together, our results indicate that the origin of spliceosomal introns is complex within a given genome, and that present day introns may have resulted from a dynamic flux between intron conservation, intron loss and intron gain during the evolution of hemiascomycetous yeasts.


Assuntos
Células Eucarióticas/metabolismo , Evolução Molecular , Íntrons/genética , Splicing de RNA/genética , Leveduras/genética , Sequência de Aminoácidos , Sequência Conservada/genética , Genes Fúngicos/genética , Dados de Sequência Molecular , Micélio/genética , Homologia de Sequência de Aminoácidos
13.
Genetics ; 160(2): 417-27, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11861549

RESUMO

Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes an acidic protease or an alkaline protease, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Previous results have indicated that the alkaline protease response to pH was dependent on YlRim101p, YlRim8p/YlPalF, and YlRim21p/YlPalH, three components of a conserved pH signaling pathway initially described in Aspergillus nidulans. To identify other partners of this response pathway, as well as pH-independent regulators of proteases, we searched for mutants that affect the expression of either or both acidic and alkaline proteases, using a YlmTn1-transposed genomic library. Four mutations affected only alkaline protease expression and identified the homolog of Saccharomyces cerevisiae SIN3. Eighty-nine mutations affected the expression of both proteases and identified 10 genes. Five of them define a conserved Rim pathway, which acts, as in other ascomycetes, by activating alkaline genes and repressing acidic genes at alkaline pH. Our results further suggest that in Y. lipolytica this pathway is active at acidic pH and is required for the expression of the acidic AXP1 gene. The five other genes are homologous to S. cerevisiae OPT1, SSY5, VPS28, NUP85, and MED4. YlOPT1 and YlSSY5 are not involved in pH sensing but define at least a second protease regulatory pathway.


Assuntos
Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Proteínas Fúngicas , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Yarrowia/enzimologia , Yarrowia/genética , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/metabolismo , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Mutação , Alinhamento de Sequência , Transdução de Sinais/fisiologia
15.
J Biotechnol ; 109(1-2): 63-81, 2004 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15063615

RESUMO

The production of heterologous proteins is a research field of high interest, with both academic and commercial applications. Yeasts offer a number of advantages as host systems, and, among them, Yarrowia lipolytica appears as one of the most attractive. This non-conventional dimorphic yeast exhibits a remarkable regularity of performance in the efficient secretion of various heterologous proteins. This review presents the main characteristics of Y. lipolytica, and the genetic and molecular tools available in this yeast. A particular emphasis is given to newly developed tools such as efficient promoters, a non-homologous integration method, and an amplification system using defective selection markers. A table recapitulates the 42 heterologous proteins produced until now in Y. lipolytica. A few relevant examples are exposed in more detail, in order to illustrate some peculiar points of the Y. lipolytica physiology, and to offer a comparison with other production systems. This amount of data demonstrates the global reliability and versatility of Y. lipolytica as a host for heterologous production.


Assuntos
Proteínas Recombinantes/biossíntese , Yarrowia/genética , Regulação da Expressão Gênica , Vetores Genéticos , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas Recombinantes/genética , Yarrowia/fisiologia
16.
Biotechnol Biofuels ; 7: 66, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834124

RESUMO

BACKGROUND: The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant. RESULTS: The sequencing of strain LS3 revealed that the nuclear genome of A. adeninivorans is 11.8 Mb long and consists of four chromosomes with regional centromeres. Its closest sequenced relative is Yarrowia lipolytica, although mean conservation of orthologs is low. With 914 introns within 6116 genes, A. adeninivorans is one of the most intron-rich hemiascomycetes sequenced to date. Several large species-specific families appear to result from multiple rounds of segmental duplications of tandem gene arrays, a novel mechanism not yet described in yeasts. An analysis of the genome and its transcriptome revealed enzymes with biotechnological potential, such as two extracellular tannases (Atan1p and Atan2p) of the tannic-acid catabolic route, and a new pathway for the assimilation of n-butanol via butyric aldehyde and butyric acid. CONCLUSIONS: The high-quality genome of this species that diverged early in Saccharomycotina will allow further fundamental studies on comparative genomics, evolution and phylogenetics. Protein components of different pathways for carbon and nitrogen source utilization were identified, which so far has remained unexplored in yeast, offering clues for further biotechnological developments. In the course of identifying alternative microorganisms for biotechnological interest, A. adeninivorans has already proved its strengthened competitiveness as a promising cell factory for many more applications.

17.
PLoS One ; 8(5): e63356, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667605

RESUMO

Yarrowia lipolytica is a genetically tractable yeast species that has become an attractive model for analyses of lipid metabolism, due to its oleaginous nature. We investigated the regulation and evolution of lipid metabolism in non-Saccharomycetaceae yeasts, by carrying out a comparative physiological analysis of eight species recently assigned to the Yarrowia clade: Candida alimentaria, Y. deformans, C. galli, C. hispaniensis, C. hollandica, C. oslonensis, C. phangngensis and Y. yakushimensis. We compared the abilities of type strains of these species to grow on 31 non hydrophobic (sugars and other carbohydrate compounds) and 13 hydrophobic (triglycerides, alkanes and free fatty acids) carbon sources. Limited phenotypic diversity was observed in terms of the range of substrates used and, in the case of short-chain fatty acids, their toxicity. We assessed the oleaginous nature of these species, by evaluating their ability to store and to synthesize lipids. The mean lipid content of cells grown on oleic acid differed considerably between species, ranging from 30% of cell dry weight in C. oslonensis to 67% in C. hispaniensis. Lipid synthesis in cells grown on glucose resulted in the accumulation of C18:1 (n-9) as the major compound in most species, except for C. alimentaria and Y. yakushimensis, which accumulated principally C18:2(n-6), and C. hispaniensis, which accumulated both C16:0 and C18:1(n-9). Thus, all species of the clade were oleaginous, but they presented specific patterns of growth, lipid synthesis and storage, and therefore constitute good models for the comparative analysis of lipid metabolism in this basal yeast clade.


Assuntos
Metabolismo dos Lipídeos , Yarrowia/fisiologia , Carbono/farmacologia , Meios de Cultura/farmacologia , Glucose/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/biossíntese , Ácido Oleico/farmacologia , Filogenia , Fatores de Tempo , Yarrowia/efeitos dos fármacos , Yarrowia/crescimento & desenvolvimento
18.
DNA Res ; 19(3): 231-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22368181

RESUMO

Alternative pre-mRNA splicing is a major mechanism contributing to the proteome complexity of most eukaryotes, especially mammals. In less complex organisms, such as yeasts, the numbers of genes that contain introns are low and cases of alternative splicing (AS) with functional implications are rare. We report the first case of AS with functional consequences in the yeast Yarrowia lipolytica. The splicing pattern was found to govern the cellular localization of malate dehydrogenase, an enzyme of the central carbon metabolism. This ubiquitous enzyme is involved in the tricarboxylic acid cycle in mitochondria and in the glyoxylate cycle, which takes place in peroxisomes and the cytosol. In Saccharomyces cerevisiae, three genes encode three compartment-specific enzymes. In contrast, only two genes exist in Y. lipolytica. One gene (YlMDH1, YALI0D16753g) encodes a predicted mitochondrial protein, whereas the second gene (YlMDH2, YALI0E14190g) generates the cytosolic and peroxisomal forms through the alternative use of two 3'-splice sites in the second intron. Both splicing variants were detected in cDNA libraries obtained from cells grown under different conditions. Mutants expressing the individual YlMdh2p isoforms tagged with fluorescent proteins confirmed that they localized to either the cytosolic or the peroxisomal compartment.


Assuntos
Processamento Alternativo/genética , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Malato Desidrogenase/genética , Yarrowia/genética , Ciclo do Ácido Cítrico/genética , Citosol/enzimologia , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Íntrons/genética , Malato Desidrogenase/classificação , Malato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Filogenia , Precursores de RNA/genética , Precursores de RNA/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Yarrowia/enzimologia
19.
G3 (Bethesda) ; 2(2): 299-311, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22384408

RESUMO

Polyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages. In this article, we show that an osmotolerant yeast species, Pichia sorbitophila, recently isolated in a concentrated sorbitol solution in industry, illustrates this last situation. Its genome is a mosaic of homologous and homeologous chromosomes, or parts thereof, that corresponds to a recently formed hybrid in the process of evolution. The respective parental contributions to this genome were characterized using existing variations in GC content. The genomic changes that occurred during the short period since hybrid formation were identified (e.g., loss of heterozygosity, unilateral loss of rDNA, reciprocal exchange) and distinguished from those undergone by the two parental genomes after separation from their common ancestor (i.e., NUMT (NUclear sequences of MiTochondrial origin) insertions, gene acquisitions, gene location movements, reciprocal translocation). We found that the physiological characteristics of this new yeast species are determined by specific but unequal contributions of its two parents, one of which could be identified as very closely related to an extant Pichia farinosa strain.

20.
C R Biol ; 334(8-9): 662-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21819948

RESUMO

Whatever their abundance in genomes, spliceosomal introns are the signature of eukaryotic genes. The sequence of Saccharomyces cerevisiae, achieved fifteen years ago, revealed that this yeast has very few introns, but conserved intron boundaries typical for an intron definition mechanism. With the improvement and the development of new sequencing technologies, yeast genomes have been extensively sequenced during the last decade. We took advantage of this plethora of data to compile and assess the intron content of the protein-coding genes of 13 genomes representative of the evolution of hemiascomycetous yeasts. We first observed that intron paucity is a general rule and that the fastest evolving genomes tend to lose their introns more rapidly (e.g. S. cerevisiae versus Yarrowia lipolytica). Noticeable differences were also confirmed for 5' splice sites and branch point sites (BP) as well as for the relative position of the BP. These changes seemed to be correlated with the lineage specific evolution of splicing factors.


Assuntos
Genoma Fúngico/genética , Íntrons/genética , Saccharomycetales/genética , Processamento Alternativo/genética , Bases de Dados Genéticas , Evolução Molecular , Filogenia , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa