Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673903

RESUMO

Cardiotonic steroids (CTSs), such as digoxin, are used for heart failure treatment. However, digoxin permeates the brain-blood barrier (BBB), affecting central nervous system (CNS) functions. Finding a CTS that does not pass through the BBB would increase CTSs' applicability in the clinic and decrease the risk of side effects on the CNS. This study aimed to investigate the tissue distribution of the CTS ouabain following intraperitoneal injection and whether ouabain passes through the BBB. After intraperitoneal injection (1.25 mg/kg), ouabain concentrations were measured at 5 min, 15 min, 30 min, 1 h, 3 h, 6 h, and 24 h using HPLC-MS in brain, heart, liver, and kidney tissues and blood plasma in C57/black mice. Ouabain was undetectable in the brain tissue. Plasma: Cmax = 882.88 ± 21.82 ng/g; Tmax = 0.08 ± 0.01 h; T1/2 = 0.15 ± 0.02 h; MRT = 0.26 ± 0.01. Cardiac tissue: Cmax = 145.24 ± 44.03 ng/g (undetectable at 60 min); Tmax = 0.08 ± 0.02 h; T1/2 = 0.23 ± 0.09 h; MRT = 0.38 ± 0.14 h. Kidney tissue: Cmax = 1072.3 ± 260.8 ng/g; Tmax = 0.35 ± 0.19 h; T1/2 = 1.32 ± 0.76 h; MRT = 1.41 ± 0.71 h. Liver tissue: Cmax = 2558.0 ± 382.4 ng/g; Tmax = 0.35 ± 0.13 h; T1/2 = 1.24 ± 0.7 h; MRT = 0.98 ± 0.33 h. Unlike digoxin, ouabain does not cross the BBB and is eliminated quicker from all the analyzed tissues, giving it a potential advantage over digoxin in systemic administration. However, the inability of ouabain to pass though the BBB necessitates intracerebral administration when used to investigate its effects on the CNS.


Assuntos
Camundongos Endogâmicos C57BL , Ouabaína , Animais , Distribuição Tecidual , Injeções Intraperitoneais , Camundongos , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Espectrometria de Massas/métodos , Rim/metabolismo , Rim/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Miocárdio/metabolismo , Cardiotônicos/farmacocinética , Cardiotônicos/farmacologia , Cardiotônicos/administração & dosagem
2.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675561

RESUMO

The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.


Assuntos
Simulação de Acoplamento Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Humanos , Ligantes , Relação Estrutura-Atividade , Modelos Moleculares , Ligação Proteica , Sítios de Ligação , Oxazóis/química , Oxazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Estrutura Molecular , Descoberta de Drogas
3.
Mol Psychiatry ; 27(1): 34-37, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34140635

RESUMO

As millions of patients have been infected by SARS-CoV-2 virus a vast number of individuals complain about continuing breathlessness and fatigue even months after the onset of the disease. This overwhelming phenomenon has not been well defined and has been called "post-COVID syndrome" or "long-COVID" [1]. There are striking similarities to myalgic encephalomyelitis also called chronic fatigue syndrome linked to a viral and autoimmune pathogenesis. In both disorders neurotransmitter receptor antibodies against ß-adrenergic and muscarinic receptors may play a key role. We found similar elevation of these autoantibodies in both patient groups. Extracorporeal apheresis using a special filter seems to be effective in reducing these antibodies in a significant way clearly improving the debilitating symptoms of patients with chronic fatigue syndrome. Therefore, such a form of neuropheresis may provide a promising therapeutic option for patients with post-COVID-19 syndrome. This method will also be effective when other hitherto unknown antibodies and inflammatory mediators are involved.


Assuntos
Remoção de Componentes Sanguíneos , COVID-19 , Síndrome de Fadiga Crônica , COVID-19/complicações , Síndrome de Fadiga Crônica/diagnóstico , Síndrome de Fadiga Crônica/tratamento farmacológico , Humanos , SARS-CoV-2 , Síndrome de COVID-19 Pós-Aguda
4.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792833

RESUMO

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Assuntos
Anfetamina , Dopamina , Animais , Feminino , Camundongos , Amidoidrolases/genética , Amidoidrolases/metabolismo , Anfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Genótipo , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética
5.
J Chem Inf Model ; 63(21): 6667-6680, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37847527

RESUMO

Trace amine-associated receptors (TAARs) were discovered in 2001 as new members of class A G protein-coupled receptors (GPCRs). With the only exception of TAAR1, TAAR members (TAAR2-9, also known as noncanonical olfactory receptors) were originally described exclusively in the olfactory epithelium and believed to mediate the innate perception of volatile amines. However, most noncanonical olfactory receptors are still orphan receptors. Given its recently discovered nonolfactory expression and therapeutic potential, TAAR5 has been the focus of deorphanization campaigns that led to the discovery of a few druglike antagonists. Here, we report four novel TAAR5 antagonists identified through high-throughput screening, which, along with the four ligands published in the literature, constituted our starting point to design a computational strategy for the identification of TAAR5 ligands. We developed a structure-based virtual screening protocol that allowed us to identify three new TAAR5 antagonists with a hit rate of 10%. Despite lacking an experimental structure, we accurately modeled the TAAR5 binding site by integrating comparative sequence- and structure-based analyses of serotonin receptors with homology modeling and side-chain optimization. In summary, we have identified seven new TAAR5 antagonists that could serve as lead candidates for the development of new treatments for depression, anxiety, and neurodegenerative diseases.


Assuntos
Receptores Odorantes , Animais , Camundongos , Receptores Acoplados a Proteínas G/química , Aminas , Sítios de Ligação , Ligantes
6.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37894992

RESUMO

Trace amine-associated receptors (TAARs), which were discovered only in 2001, are known to be involved in the regulation of a spectrum of neuronal processes and may play a role in the pathogenesis of a number of neuropsychiatric diseases, such as schizophrenia and others. We have previously shown that TAARs also have interconnections with the regulation of neurogenesis and, in particular, with the neurogenesis of dopamine neurons, but the exact mechanisms of this are still unknown. In our work we analyzed the expression of TAARs (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8 and TAAR9) in cells from the human substantia nigra and ventral tegmental areas and in human pluripotent stem cells at consecutive stages of their differentiation to dopaminergic neurons, using RNA sequencing data from open databases, and TaqMan PCR data from the differentiation of human induced pluripotent stem cells in vitro. Detectable levels of TAARs expression were found in cells at the pluripotent stages, and the dynamic of their expression had a trend of increasing with the differentiation and maturation of dopamine neurons. The expression of several TAAR types (particularly TAAR5) was also found in human dopaminergic neuron-enriched zones in the midbrain. This is the first evidence of TAARs expression during neuronal differentiation, which can help to approach an understanding of the role of TAARs in neurogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Aminas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674941

RESUMO

Elaboration of protocols for differentiation of human pluripotent stem cells to dopamine neurons is an important issue for development of cell replacement therapy for Parkinson's disease. A number of protocols have been already developed; however, their efficiency and specificity still can be improved. Investigating the role of signaling cascades, important for neurogenesis, can help to solve this problem and to provide a deeper understanding of their role in neuronal development. Notch signaling plays an essential role in development and maintenance of the central nervous system after birth. In our study, we analyzed the effect of Notch activation and inhibition at the early stages of differentiation of human induced pluripotent stem cells to dopaminergic neurons. We found that, during the first seven days of differentiation, the cells were not sensitive to the Notch inhibition. On the contrary, activation of Notch signaling during the same time period led to significant changes and was associated with an increase in expression of genes, specific for caudal parts of the brain, a decrease of expression of genes, specific for forebrain, as well as a decrease of expression of genes, important for the formation of axons and dendrites and microtubule stabilizing proteins.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Receptores Notch/metabolismo
8.
J Biol Chem ; 297(6): 101361, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756883

RESUMO

The dopamine (DA) transporter (DAT) is part of a presynaptic multiprotein network involving interactions with scaffold proteins via its C-terminal PDZ domain-binding sequence. Using a mouse model expressing DAT with mutated PDZ-binding sequence (DAT-AAA), we previously demonstrated the importance of this binding sequence for striatal expression of DAT. Here, we show by application of direct stochastic reconstruction microscopy not only that the striatal level of transporter is reduced in DAT-AAA mice but also that the nanoscale distribution of this transporter is altered with a higher propensity of DAT-AAA to localize to irregular nanodomains in dopaminergic terminals. In parallel, we observe mesostriatal DA adaptations and changes in DA-related behaviors distinct from those seen in other genetic DAT mouse models. DA levels in the striatum are reduced to ∼45% of that of WT, accompanied by elevated DA turnover. Nonetheless, fast-scan cyclic voltammetry recordings on striatal slices reveal a larger amplitude and prolonged clearance rate of evoked DA release in DAT-AAA mice compared with WT mice. Autoradiography and radioligand binding show reduced DA D2 receptor levels, whereas immunohistochemistry and autoradiography show unchanged DA D1 receptor levels. In behavioral experiments, we observe enhanced self-administration of liquid food under both a fixed ratio of one and progressive ratio schedule of reinforcement but a reduction compared with WT when using cocaine as reinforcer. In summary, our data demonstrate how disruption of PDZ domain interactions causes changes in DAT expression and its nanoscopic distribution that in turn alter DA clearance dynamics and related behaviors.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Homeostase , Motivação , Domínios PDZ , Recompensa , Animais , Sítios de Ligação , Cocaína/administração & dosagem , Condicionamento Operante , Masculino , Camundongos , Ligação Proteica , Autoadministração
9.
Cell Mol Neurobiol ; 42(7): 2273-2288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34014421

RESUMO

The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.


Assuntos
Isoenzimas , Óxido Nítrico , Amidoidrolases , Animais , Sistema Nervoso Central , Humanos , Camundongos
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499749

RESUMO

Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine's reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Animais , Masculino , Feminino , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Cocaína/farmacologia , Locomoção/genética , Transtornos Relacionados ao Uso de Cocaína/genética , Ratos Transgênicos , Inibidores da Captação de Dopamina/farmacologia
11.
Int J Mol Sci ; 23(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887159

RESUMO

Worldwide, approximately 27 million people are affected by Alzheimer's disease (AD). AD pathophysiology is believed to be caused by the deposition of the ß-amyloid peptide (Aß). Aß can reduce long-term potentiation (LTP), a form of synaptic plasticity that is closely associated with learning and memory and involves postsynaptic glutamate receptor phosphorylation and trafficking. Moreover, Aß seems to be able to reduce glutamatergic transmission by increasing the endocytosis of NMDA receptors. Trace amines (TAs) are biogenic amines that are structurally similar to monoamine neurotransmitters. TAs bind to G protein-coupled receptors, called TAARs (trace amine-associated receptors); the best-studied member of this family, TAAR1, is distributed in the cortical and limbic structures of the CNS. It has been shown that the activation of TAAR1 can rescue glutamatergic hypofunction and that TAAR1 can modulate glutamate NMDA receptor-related functions in the frontal cortex. Several lines of evidence also suggest the pro-cognitive action of TAAR1 agonists in various behavioural experimental protocols. Thus, we studied, in vitro, the role of the TAAR1 agonist RO5256390 on basal cortical glutamatergic transmission and tested its effect on Aß-induced dysfunction. Furthermore, we investigated, in vivo, the role of TAAR1 in cognitive dysfunction induced by Aß infusion in Aß-treated mice. In vitro data showed that Aß 1-42 significantly decreased NMDA cell surface expression while the TAAR1 agonist RO5256390 promoted their membrane insertion in cortical cells. In vivo, RO5256390 showed a mild pro-cognitive effect, as demonstrated by the better performance in the Y maze test in mice treated with Aß. Further studies are needed to better understand the interplay between TAAR1/Aß and glutamatergic signalling, in order to evaluate the eventual beneficial effect in different experimental paradigms and animal models. Taken together, our data indicate that TAAR1 agonism may provide a novel therapeutic approach in the treatments of disorders involving Aß-induced cognitive impairments, such as AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/tratamento farmacológico , Aminas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato
12.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36233204

RESUMO

The contribution of nitric oxide synthases (NOSs) to the pathophysiology of several neuropsychiatric disorders is recognized, but the role of their regulators, dimethylarginine dimethylaminohydrolases (DDAHs), is less understood. This study's objective was to estimate DDAH1 and DDAH2 associations with biological processes implicated in major psychiatric disorders using publicly accessible expression databases. Since co-expressed genes are more likely to be involved in the same biologic processes, we investigated co-expression patterns with DDAH1 and DDAH2 in the dorsolateral prefrontal cortex in psychiatric patients and control subjects. There were no significant differences in DDAH1 and DDAH2 expression levels in schizophrenia or bipolar disorder patients compared to controls. Meanwhile, the data suggest that in patients, DDAH1 and DDHA2 undergo a functional shift mirrored in changes in co-expressed gene patterns. This disarrangement appears in the loss of expression level correlations between DDAH1 or DDAH2 and genes associated with psychiatric disorders and reduced functional similarity of DDAH1 or DDAH2 co-expressed genes in the patient groups. Our findings evidence the possible involvement of DDAH1 and DDAH2 in neuropsychiatric disorder development, but the underlying mechanisms need experimental validation.


Assuntos
Amidoidrolases , Produtos Biológicos , Transtornos Mentais , Amidoidrolases/genética , Amidoidrolases/metabolismo , Arginina/metabolismo , Humanos , Transtornos Mentais/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase
13.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328548

RESUMO

Trace amine-associated receptor 5 (TAAR5) is a G protein-coupled receptor that belongs to the TAARs family (TAAR1-TAAR9). TAAR5 is expressed in the olfactory epithelium and is responsible for sensing 3-methylamine (TMA). However, recent studies showed that TAAR5 is also expressed in the limbic brain regions and is involved in the regulation of emotional behaviour and adult neurogenesis, suggesting that TAAR5 antagonism may represent a novel therapeutic strategy for anxiety and depression. We used the AtomNet® model, the first deep learning neural network for structure-based drug discovery, to identify putative TAAR5 ligands and tested them in an in vitro BRET assay. We found two mTAAR5 antagonists with low to submicromolar activity that are able to inhibit the cAMP production induced by TMA. Moreover, these two compounds also inhibited the mTAAR5 downstream signalling, such as the phosphorylation of CREB and ERK. These two hits exhibit drug-like properties and could be used to further develop more potent TAAR5 ligands with putative anxiolytic and antidepressant activity.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Ligantes , Redes Neurais de Computação , Mucosa Olfatória
14.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430544

RESUMO

The Trace Amine-Associated Receptor 1 (TAAR1) is one of the six functional receptors belonging to the family of monoamine-related G protein-coupled receptors (TAAR1-TAAR9) found in humans. However, the exact biological mechanisms of TAAR1 central and peripheral action remain to be fully understood. TAAR1 is widely expressed in the prefrontal cortex and several limbic regions, interplaying with the dopamine system to modulate the reward circuitry. Recent clinical trials suggest the efficacy of TAAR1 agonists as potential novel antipsychotic agents. Here, we characterize behavioral and neurochemical phenotypes of TAAR1 knockout mice, focusing on aggression and self-grooming behavior that both strongly depend on the monoaminergic signaling and cortico-striatal and cortico-limbic circuits. Overall, we report increased aggression in these knockout mice in the resident-intruder test, accompanied by reduced self-grooming behavior in the novelty-induced grooming test, and by higher cortical serotonin (5-HT) tissue levels. Further studies are necessary to explore whether TAAR1-based therapies can become potential novel treatments for a wide range of neuropsychiatric disorders associated with aggression.


Assuntos
Genética Comportamental , Receptores Acoplados a Proteínas G , Serotonina , Animais , Camundongos , Agressão/fisiologia , Asseio Animal/fisiologia , Camundongos Knockout , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo
15.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232878

RESUMO

Starting from a screening hit, a set of analogs was synthesized based on a 4-(2-aminoethyl)piperidine core not associated previously with trace amine-associated receptor 1 (TAAR1) modulation in the literature. Several structure-activity relationship generalizations have been drawn from the observed data, some of which were corroborated by molecular modeling against the crystal structure of TAAR1. The four most active compounds (EC50 for TAAR1 agonistic activity ranging from 0.033 to 0.112 µM) were nominated for evaluation in vivo. The dopamine transporter knockout (DAT-KO) rat model of dopamine-dependent hyperlocomotion was used to evaluate compounds' efficacy in vivo. Out of four compounds, only one compound (AP163) displayed a statistically significant and dose-dependent reduction in hyperlocomotion in DAT-KO rats. As such, compound AP163 represents a viable lead for further preclinical characterization as a potential novel treatment option for disorders associated with increased dopaminergic function, such as schizophrenia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Transtornos Psicóticos , Animais , Dopamina , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Ratos , Receptores Acoplados a Proteínas G/metabolismo
16.
BMC Ophthalmol ; 21(1): 357, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625056

RESUMO

BACKGROUND: Keratoconus is a chronic degenerative disorder of the cornea characterized by thinning and cone-shaped protrusions. Although genetic factors play a key role in keratoconus development, the etiology is still under investigation. The occurrence of single-nucleotide polymorphisms (SNPs) associated with keratoconus in Russian patients is poorly studied. The purpose of this study was to validate whether three reported keratoconus-associated SNPs (rs1536482 near the COL5A1 gene, rs2721051 near the FOXO1 gene, rs1324183 near the MPDZ gene) are also actual for a Russian cohort of patients. Additionally, we investigated the COL5A1 promoter sequence for single-nucleotide variants (SNVs) in a subgroup of keratoconus patients with at least one rs1536482 minor allele (rs1536482+) to assess the role of these SNVs in keratoconus susceptibility associated with rs1536482. METHODS: This case-control study included 150 keratoconus patients and two control groups (main and additional, 205 and 474 participants, respectively). We performed PCR targeting regions flanking SNVs and the COL5A1 promoter, followed by Sanger sequencing of amplicons. The additional control group was genotyped using an SNP array. RESULTS: The minor allele frequency was significantly different between the keratoconus and control cohorts (main and combined) for rs1536482, rs2721051, and rs1324183 (p-value < 0.05). The rare variants rs1043208782 and rs569248712 were found in the COL5A1 promoter in two out of 94 rs1536482+ keratoconus patients. CONCLUSION: rs1536482, rs2721051, and rs1324183 were associated with keratoconus in a Russian cohort. SNVs in the COL5A1 promoter do not play a major role in keratoconus susceptibility associated with rs1536482.


Assuntos
Colágeno Tipo V , Ceratocone , Estudos de Casos e Controles , Colágeno Tipo V/genética , Predisposição Genética para Doença , Humanos , Ceratocone/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas
17.
Pharmacol Rev ; 70(3): 549-620, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29941461

RESUMO

Trace amines are endogenous compounds classically regarded as comprising ß-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.


Assuntos
Aminas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Olfato
18.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298937

RESUMO

Trace amine-associated receptors (TAARs) are a group of G protein-coupled receptors that are expressed in the olfactory epithelium, central nervous system, and periphery. TAAR family generally consists of nine types of receptors (TAAR1-9), which can detect biogenic amines. During the last 5 years, the TAAR5 receptor became one of the most intriguing receptors in this subfamily. Recent studies revealed that TAAR5 is involved not only in sensing socially relevant odors but also in the regulation of dopamine and serotonin transmission, emotional regulation, and adult neurogenesis by providing significant input from the olfactory system to the limbic brain areas. Such results indicate that future antagonistic TAAR5-based therapies may have high pharmacological potential in the field of neuropsychiatric disorders. TAAR5 is known to be expressed in leucocytes as well. To evaluate potential hematological side effects of such future treatments we analyzed several hematological parameters in mice lacking TAAR5. In these mutants, we observed minor but significant changes in the osmotic fragility test of erythrocytes and hematocrit levels. At the same time, analysis of other parameters including complete blood count and reticulocyte levels showed no significant alterations in TAAR5 knockout mice. Thus, TAAR5 gene knockout leads to minor negative changes in the erythropoiesis or eryptosis processes, and further research in that field is needed. The impact of TAAR5 deficiency on other hematological parameters seems minimal. Such negative, albeit minor, effects of TAAR5 deficiency should be taken into account during future TAAR5-based therapy development.


Assuntos
Aminas Biogênicas/metabolismo , Eritrócitos/metabolismo , Fragilidade Osmótica/genética , Receptores Acoplados a Proteínas G/genética , Animais , Sistema Nervoso Central/metabolismo , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Olfatória/metabolismo
19.
Int J Mol Sci ; 23(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35008636

RESUMO

The identification and characterization of ligand-receptor binding sites are important for drug development. Trace amine-associated receptors (TAARs, members of the class A GPCR family) can interact with different biogenic amines and their metabolites, but the structural basis for their recognition by the TAARs is not well understood. In this work, we have revealed for the first time a group of conserved motifs (fingerprints) characterizing TAARs and studied the docking of aromatic (ß-phenylethylamine, tyramine) and aliphatic (putrescine and cadaverine) ligands, including gamma-aminobutyric acid, with human TAAR1 and TAAR6 receptors. We have identified orthosteric binding sites for TAAR1 (Asp68, Asp102, Asp284) and TAAR6 (Asp78, Asp112, Asp202). By analyzing the binding results of 7500 structures, we determined that putrescine and cadaverine bind to TAAR1 at one site, Asp68 + Asp102, and to TAAR6 at two sites, Asp78 + Asp112 and Asp112 + Asp202. Tyramine binds to TAAR6 at the same two sites as putrescine and cadaverine and does not bind to TAAR1 at the selected Asp residues. ß-Phenylethylamine and gamma-aminobutyric acid do not bind to the TAAR1 and TAAR6 receptors at the selected Asp residues. The search for ligands targeting allosteric and orthosteric sites of TAARs has excellent pharmaceutical potential.


Assuntos
Aminas Biogênicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Cadaverina/metabolismo , Peixes/metabolismo , Humanos , Ligantes , Camundongos , Fenetilaminas/metabolismo , Putrescina/metabolismo , Tiramina/metabolismo , Ácido gama-Aminobutírico/metabolismo
20.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445502

RESUMO

Trace amine-associated receptors (TAAR) recognize organic compounds, including primary, secondary, and tertiary amines. The TAAR5 receptor is known to be involved in the olfactory sensing of innate socially relevant odors encoded by volatile amines. However, emerging data point to the involvement of TAAR5 in brain functions, particularly in the emotional behaviors mediated by the limbic system which suggests its potential contribution to the pathogenesis of neuropsychiatric diseases. TAAR5 expression was explored in datasets available in the Gene Expression Omnibus, Allen Brain Atlas, and Human Protein Atlas databases. Transcriptomic data demonstrate ubiquitous low TAAR5 expression in the cortical and limbic brain areas, the amygdala and the hippocampus, the nucleus accumbens, the thalamus, the hypothalamus, the basal ganglia, the cerebellum, the substantia nigra, and the white matter. Altered TAAR5 expression is identified in Down syndrome, major depressive disorder, or HIV-associated encephalitis. Taken together, these data indicate that TAAR5 in humans is expressed not only in the olfactory system but also in certain brain structures, including the limbic regions receiving olfactory input and involved in critical brain functions. Thus, TAAR5 can potentially be involved in the pathogenesis of brain disorders and represents a valuable novel target for neuropsychopharmacology.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Síndrome de Down/genética , Regulação para Baixo , Encefalite Viral/genética , Infecções por HIV/complicações , Receptores Acoplados a Proteínas G/genética , Bases de Dados Genéticas , Encefalite Viral/etiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Infecções por HIV/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de RNA , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa