Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Pathog ; 15(2): e1007594, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779790

RESUMO

Several naked virus species, including members of the Picornaviridae family, have recently been described to escape their host cells and spread infection via enclosure in extracellular vesicles (EV). EV are 50-300 nm sized lipid membrane-enclosed particles produced by all cells that are broadly recognized for playing regulatory roles in numerous (patho)physiological processes, including viral infection. Both pro- and antiviral functions have been ascribed to EV released by virus-infected cells. It is currently not known whether this reported functional diversity is a result of the release of multiple virus-containing and non-virus containing EV subpopulations that differ in composition and function. Using encephalomyocarditis virus infection (EMCV, Picornaviridae family), we here provide evidence that EV populations released by infected cells are highly heterogeneous. Virus was contained in two distinct EV populations that differed in physical characteristics, such as sedimentation properties, and in enrichment for proteins indicative of different EV biogenesis pathways, such as the plasma membrane resident proteins Flotillin-1 and CD9, and the autophagy regulatory protein LC3. Additional levels of EV heterogeneity were identified using high-resolution flow cytometric analysis of single EV. Importantly, we demonstrate that EV subsets released during EMCV infection varied largely in potency of transferring virus infection and in their kinetics of release from infected cells. These data support the notion that heterogeneous EV populations released by virus-infected cells can exert diverse functions at distinct time points during infection. Unraveling the compositional, temporal and functional heterogeneity of these EV populations using single EV analysis technologies, as employed in this study, is vital to understanding the role of EV in virus dissemination and antiviral host responses.


Assuntos
Vírus da Encefalomiocardite/metabolismo , Vesículas Extracelulares/fisiologia , Vesículas Extracelulares/virologia , Autofagia , Vesículas Extracelulares/metabolismo , Células HeLa , Humanos , Picornaviridae/metabolismo , Picornaviridae/patogenicidade , Infecções por Picornaviridae/metabolismo
2.
Nat Commun ; 15(1): 2863, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627362

RESUMO

Immune checkpoint inhibition has shown success in treating metastatic cutaneous melanoma but has limited efficacy against metastatic uveal melanoma, a rare variant arising from the immune privileged eye. To better understand this resistance, we comprehensively profile 100 human uveal melanoma metastases using clinicogenomics, transcriptomics, and tumor infiltrating lymphocyte potency assessment. We find that over half of these metastases harbor tumor infiltrating lymphocytes with potent autologous tumor specificity, despite low mutational burden and resistance to prior immunotherapies. However, we observe strikingly low intratumoral T cell receptor clonality within the tumor microenvironment even after prior immunotherapies. To harness these quiescent tumor infiltrating lymphocytes, we develop a transcriptomic biomarker to enable in vivo identification and ex vivo liberation to counter their growth suppression. Finally, we demonstrate that adoptive transfer of these transcriptomically selected tumor infiltrating lymphocytes can promote tumor immunity in patients with metastatic uveal melanoma when other immunotherapies are incapable.


Assuntos
Melanoma , Neoplasias Cutâneas , Neoplasias Uveais , Humanos , Melanoma/genética , Melanoma/terapia , Neoplasias Uveais/genética , Neoplasias Uveais/terapia , Linfócitos do Interstício Tumoral , Imunoterapia , Microambiente Tumoral/genética
3.
Head Neck ; 45(1): 212-224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271833

RESUMO

BACKGROUND: The objective was to assess secretion of small extracellular vesicular microRNA (exo-miRNA) in head and neck squamous cell carcinoma (HNSCC) according to human papillomavirus (HPV) status, and determine the translational potential as a liquid biopsy for early detection. METHODS: This study employed a combination of cell culture and case-control study design using archival pretreatment serum. Small extracellular vesicles (sEV) were isolated from conditioned culture media and human serum samples via differential ultracentrifugation. miRNA-sequencing was performed on each sEV isolate. RESULTS: There were clear exo-miRNA profiles that distinguished HNSCC cell lines from nonpathologic oral epithelial control cells. While there was some overlap among profiles across all samples, there were apparent differences in exo-miRNA profiles according to HPV-status. Importantly, differential exo-miRNA profiles were also apparent in serum from early-stage HNSCC cases relative to cancer-free controls. CONCLUSIONS: Our findings indicate that exo-miRNA are highly dysregulated in HNSCC and support the potential of exo-miRNA as biomarkers for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , Infecções por Papillomavirus/genética , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Estudos de Casos e Controles , Biópsia Líquida , Papillomaviridae/genética
4.
RNA ; 16(2): 450-61, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20040593

RESUMO

In recent years the improvements in high-throughput gene expression analysis have led to the discovery of numerous non-protein-coding RNA (npcRNA) molecules. They form an abundant class of untranslated RNAs that have shown to play a crucial role in different biochemical pathways in the cell. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an efficient tool to measure RNA abundance and gene expression levels in tiny amounts of material. Despite its sensitivity, the lack of appropriate internal controls necessary for accurate data analysis is a limiting factor for its application in npcRNA research. Common internal controls applied are protein-coding reference genes, also termed "housekeeping" genes (HKGs). However, their expression levels reportedly vary among tissues and different experimental conditions. Moreover, application of HKGs as reference in npcRNA expression analyses is questionable, due to the differences in biogenesis. To address the issue of optimal RT-qPCR normalizers in npcRNA analysis, we performed a systematic evaluation of 18 npcRNAs along with four common HKGs in 20 different human tissues. To determine the most suitable internal control with least expression variance, four evaluation strategies, geNORM, NormFinder, BestKeeper, and the comparative delta C(q) method, were applied. Our data strongly suggest that five npcRNAs, which we term housekeeping RNAs (HKRs), exhibit significantly better constitutive expression levels in 20 different human tissues than common HKGs. Determined HKRs are ideal candidates for RT-qPCR data normalization in human transcriptome analysis, and might also be used as reference genes irrespective of the nature of the genes under investigation.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sequência de Bases , Primers do DNA/genética , Perfilação da Expressão Gênica/normas , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Controle de Qualidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/estatística & dados numéricos , Distribuição Tecidual
5.
Nucleic Acids Res ; 35(2): 529-39, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17175535

RESUMO

In a rare occasion a single chromosomal locus was targeted twice by independent Alu-related retroposon insertions, and in both cases supported neuronal expression of the respective inserted genes encoding small non-protein coding RNAs (npcRNAs): BC200 RNA in anthropoid primates and G22 RNA in the Lorisoidea branch of prosimians. To avoid primate experimentation, we generated transgenic mice to study neuronal expression and protein binding partners for BC200 and G22 npcRNAs. The BC200 gene, with sufficient upstream flanking sequences, is expressed in transgenic mouse brain areas comparable to those in human brain, and G22 gene, with upstream flanks, has a similar expression pattern. However, when all upstream regions of the G22 gene were removed, expression was completely abolished, despite the presence of intact internal RNA polymerase III promoter elements. Transgenic BC200 RNA is transported into neuronal dendrites as it is in human brain. G22 RNA, almost twice as large as BC200 RNA, has a similar subcellular localization. Both transgenically expressed npcRNAs formed RNP complexes with poly(A) binding protein and the heterodimer SRP9/14, as does BC200 RNA in human. These observations strongly support the possibility that the independently exapted npcRNAs have similar functions, perhaps in translational regulation of dendritic protein biosynthesis in neurons of the respective primates.


Assuntos
Neurônios/metabolismo , RNA não Traduzido/metabolismo , Animais , Dendritos/química , Embrião de Mamíferos/metabolismo , Galago , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a Poli(A)/metabolismo , Primatas , Regiões Promotoras Genéticas , RNA não Traduzido/análise , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Distribuição Tecidual , Transcrição Gênica
6.
Sci Rep ; 9(1): 4300, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862860

RESUMO

Serotonin 5-HT2C receptor is a G-protein coupled excitatory receptor that regulates several biochemical pathways and has been implicated in obesity, mental state, sleep cycles, autism, neuropsychiatric disorders and neurodegenerative diseases. The activity of 5-HT2CR is regulated via alternative splicing and A to I editing of exon Vb of its pre-mRNA. Snord115 is a small nucleolar RNA that is expressed in mouse neurons and displays an 18-nucleotide base complementary to exon Vb of 5-HT2CR pre-mRNA. For almost two decades this putative guide element of Snord115 has wandered like a ghost through the literature in attempts to elucidate the biological significance of this complementarity. In mice, Snord115 is expressed in neurons and absent in the choroid plexus where, in contrast, 5-Ht2cr mRNA is highly abundant. Here we report the analysis of 5-Ht2cr pre-mRNA posttranscriptional processing via RNA deep sequencing in a mouse model that ectopically expresses Snord115 in the choroid plexus. In contrast to previous reports, our analysis demonstrated that Snord115 does not control alternative splicing of 5-Ht2cr pre-mRNA in vivo. We identified a modest, yet statistically significant reduction of 5-Ht2cr pre-mRNA A to I editing at the major A, B, C and D sites. We suggest that Snord115 and exon Vb of 5Ht2cr pre-mRNA form a double-stranded structure that is subject to ADAR-mediated A to I editing. To the best of our knowledge, this is the first comprehensive Snord115 gain-of-function analysis based on in vivo mouse models.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Plexo Corióideo/metabolismo , Feminino , Genótipo , Masculino , Camundongos , Camundongos Mutantes , Edição de RNA/genética , Edição de RNA/fisiologia , Splicing de RNA/genética , Splicing de RNA/fisiologia , RNA Nucleolar Pequeno/genética
7.
Sci Rep ; 6: 20398, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26848093

RESUMO

Prader-Willi syndrome (PWS) is a neurogenetic disorder caused by loss of paternally expressed genes on chromosome 15q11-q13. The PWS-critical region (PWScr) contains an array of non-protein coding IPW-A exons hosting intronic SNORD116 snoRNA genes. Deletion of PWScr is associated with PWS in humans and growth retardation in mice exhibiting ~15% postnatal lethality in C57BL/6 background. Here we analysed a knock-in mouse containing a 5'HPRT-LoxP-Neo(R) cassette (5'LoxP) inserted upstream of the PWScr. When the insertion was inherited maternally in a paternal PWScr-deletion mouse model (PWScr(p-/m5'LoxP)), we observed compensation of growth retardation and postnatal lethality. Genomic methylation pattern and expression of protein-coding genes remained unaltered at the PWS-locus of PWScr(p-/m5'LoxP) mice. Interestingly, ubiquitous Snord116 and IPW-A exon transcription from the originally silent maternal chromosome was detected. In situ hybridization indicated that PWScr(p-/m5'LoxP) mice expressed Snord116 in brain areas similar to wild type animals. Our results suggest that the lack of PWScr RNA expression in certain brain areas could be a primary cause of the growth retardation phenotype in mice. We propose that activation of disease-associated genes on imprinted regions could lead to general therapeutic strategies in associated diseases.


Assuntos
Síndrome de Prader-Willi/patologia , RNA Nucleolar Pequeno/metabolismo , Animais , Northern Blotting , Southern Blotting , Encéfalo/metabolismo , Cromossomos Humanos Par 5 , Metilação de DNA , Modelos Animais de Doenças , Éxons , Feminino , Técnicas de Introdução de Genes , Loci Gênicos , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Fenótipo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/metabolismo , RNA Nucleolar Pequeno/genética
8.
Sci Rep ; 4: 6445, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25246219

RESUMO

Prader-Willi Syndrome (PWS) is a neurogenetic disorder caused by the deletion of imprinted genes on the paternally inherited human chromosome 15q11-q13. This locus harbours a long non-protein-coding RNA (U-UBE3A-ATS) that contains six intron-encoded snoRNAs, including the SNORD116 and SNORD115 repetitive clusters. The 3'-region of U-UBE3A-ATS is transcribed in the cis-antisense direction to the ubiquitin-protein ligase E3A (UBE3A) gene. Deletion of the SNORD116 region causes key characteristics of PWS. There are few indications that SNORD115 might regulate serotonin receptor (5HT2C) pre-mRNA processing. Here we performed quantitative real-time expression analyses of RNAs from the PWS locus across 20 human tissues and combined it with deep-sequencing data derived from Cap Analysis of Gene Expression (CAGE-seq) libraries. We found that the expression profiles of SNORD64, SNORD107, SNORD108 and SNORD116 are similar across analyzed tissues and correlate well with SNORD116 embedded U-UBE3A-ATS exons (IPW116). Notable differences in expressions between the aforementioned RNAs and SNORD115 together with the host IPW115 and UBE3A cis-antisense exons were observed. CAGE-seq analysis revealed the presence of potential transcriptional start sites originated from the U-UBE3A-ATS spanning region. Our findings indicate novel aspects for the expression regulation in the PWS locus.


Assuntos
Éxons/genética , Regulação da Expressão Gênica , Síndrome de Prader-Willi/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Impressão Genômica , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa