Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 202(3): 803-822, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24467623

RESUMO

We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2 ] (eCO2 ) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)-nitrogen (N) cycle processes. We decomposed the model responses into component processes affecting the response to eCO2 and confronted these with observations from the FACE experiments. Most of the models reproduced the observed initial enhancement of net primary production (NPP) at both sites, but none was able to simulate both the sustained 10-yr enhancement at Duke and the declining response at ORNL: models generally showed signs of progressive N limitation as a result of lower than observed plant N uptake. Nonetheless, many models showed qualitative agreement with observed component processes. The results suggest that improved representation of above-ground-below-ground interactions and better constraints on plant stoichiometry are important for a predictive understanding of eCO2 effects. Improved accuracy of soil organic matter inventories is pivotal to reduce uncertainty in the observed C-N budgets. The two FACE experiments are insufficient to fully constrain terrestrial responses to eCO2 , given the complexity of factors leading to the observed diverging trends, and the consequential inability of the models to explain these trends. Nevertheless, the ecosystem models were able to capture important features of the experiments, lending some support to their projections.


Assuntos
Ar , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Ecossistema , Ciclo do Nitrogênio , Atmosfera/química , Biomassa , Carbono/metabolismo , Modelos Biológicos , Nitrogênio/metabolismo , Fatores de Tempo
2.
Ecol Lett ; 14(4): 349-57, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21303437

RESUMO

The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO2 as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Biomassa , Ciclo do Carbono , Clima , Ecossistema , Ciclo do Nitrogênio , North Carolina , Raízes de Plantas , Microbiologia do Solo
3.
New Phytol ; 185(2): 514-28, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19895671

RESUMO

*The potential for elevated [CO(2)]-induced changes to plant carbon (C) storage, through modifications in plant production and allocation of C among plant pools, is an important source of uncertainty when predicting future forest function. Utilizing 10 yr of data from the Duke free-air CO(2) enrichment site, we evaluated the dynamics and distribution of plant C. *Discrepancy between heights measured for this study and previously calculated heights required revision of earlier allometrically based biomass determinations, resulting in higher (up to 50%) estimates of standing biomass and net primary productivity than previous assessments. *Generally, elevated [CO(2)] caused sustained increases in plant biomass production and in standing C, but did not affect the partitioning of C among plant biomass pools. Spatial variation in net primary productivity and its [CO(2)]-induced enhancement was controlled primarily by N availability, with the difference between precipitation and potential evapotranspiration explaining most interannual variability. Consequently, [CO(2)]-induced net primary productivity enhancement ranged from 22 to 30% in different plots and years. *Through quantifying the effects of nutrient and water availability on the forest productivity response to elevated [CO(2)], we show that net primary productivity enhancement by elevated [CO(2)] is not uniform, but rather highly dependent on the availability of other growth resources.


Assuntos
Biomassa , Dióxido de Carbono/fisiologia , Carbono/fisiologia , Nitrogênio/fisiologia , Fotossíntese/fisiologia , Árvores/fisiologia , Água/fisiologia , Transpiração Vegetal , Chuva , Árvores/crescimento & desenvolvimento
4.
Oecologia ; 160(1): 129-38, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19238450

RESUMO

Empirical and modeling studies of the N cycle in temperate forests of eastern North America have focused on the mechanisms regulating the production of inorganic N, and assumed that only inorganic forms of N are available for plant growth. Recent isotope studies in field conditions suggest that amino acid capture is a widespread ecological phenomenon, although northern temperate forests have yet to be studied. We quantified fine root biomass and applied tracer-level quantities of U-(13)C(2)-(15)N-glycine, (15)NH(4) (+) and (15)NO(3) (-) in two stands, one dominated by sugar maple and white ash, the other dominated by red oak, beech, and hemlock, to assess the importance of amino acids to the N nutrition of northeastern US forests. Significant enrichment of (13)C in fine roots 2 and 5 h following tracer application indicated intact glycine uptake in both stands. Glycine accounted for up to 77% of total N uptake in the oak-beech-hemlock stand, a stand that produces recalcitrant litter, cycles N slowly and has a thick, amino acid-rich organic horizon. By contrast, glycine accounted for only 20% of total N uptake in the sugar maple and white ash stand, a stand characterized by labile litter and rapid rates of amino acid production and turnover resulting in high rates of mineralization and nitrification. This study shows that amino acid uptake is an important process occurring in two widespread, northeastern US temperate forest types with widely differing rates of N cycling.


Assuntos
Aminoácidos/farmacocinética , Modelos Biológicos , Raízes de Plantas/metabolismo , Árvores/metabolismo , Aminoácidos/metabolismo , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/farmacocinética , Solo/análise , Especificidade da Espécie , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 104(35): 14014-9, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17709743

RESUMO

Forest ecosystems are important sinks for rising concentrations of atmospheric CO(2). In previous research, we showed that net primary production (NPP) increased by 23 +/- 2% when four experimental forests were grown under atmospheric concentrations of CO(2) predicted for the latter half of this century. Because nitrogen (N) availability commonly limits forest productivity, some combination of increased N uptake from the soil and more efficient use of the N already assimilated by trees is necessary to sustain the high rates of forest NPP under free-air CO(2) enrichment (FACE). In this study, experimental evidence demonstrates that the uptake of N increased under elevated CO(2) at the Rhinelander, Duke, and Oak Ridge National Laboratory FACE sites, yet fertilization studies at the Duke and Oak Ridge National Laboratory FACE sites showed that tree growth and forest NPP were strongly limited by N availability. By contrast, nitrogen-use efficiency increased under elevated CO(2) at the POP-EUROFACE site, where fertilization studies showed that N was not limiting to tree growth. Some combination of increasing fine root production, increased rates of soil organic matter decomposition, and increased allocation of carbon (C) to mycorrhizal fungi is likely to account for greater N uptake under elevated CO(2). Regardless of the specific mechanism, this analysis shows that the larger quantities of C entering the below-ground system under elevated CO(2) result in greater N uptake, even in N-limited ecosystems. Biogeochemical models must be reformulated to allow C transfers below ground that result in additional N uptake under elevated CO(2).


Assuntos
Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Transporte Biológico , Clima , Ecossistema , Cinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa