RESUMO
Cyathostomins are globally important equine parasites, responsible for both chronic and acute pathogenic effects. The occurrence of mixed infections with numerous cyathostomin species hinders our understanding of parasite epidemiology, host-parasite dynamics, and species pathogenicity. There have been few studies of cyathostomin species occurring in horses in Ireland, where temperate climatic conditions with year-round rainfall provide suitable conditions for infection of grazing animals with bursate nematodes. Here, we amplified and sequenced the ITS-2 region of adult worms harvested at post-mortem from eleven adult horses between August 2018 and June 2020, and recorded species prevalence and abundance of worms recovered from the caecum, right ventral colon and left dorsal colon, using both BLAST and IDTAXA for taxonomic attribution. Phylogenetic relationships and community composition were also recorded and compared with other relevant studies, including a global meta-analysis. Overall, our results agree with previous studies that there does not seem to be a major difference in cyathostomin species occurrence in equids in different geographical regions. We confirmed the results of other workers in relation to the difficulties in discriminating between Cylicostephanus calicatus and Coronocyclus coronatus on the basis of ITS-2 sequences.
Assuntos
Doenças dos Cavalos , Filogenia , Animais , Cavalos , Irlanda/epidemiologia , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/epidemiologia , Strongyloidea/classificação , Strongyloidea/isolamento & purificação , Strongyloidea/genéticaRESUMO
As diseases caused by new and emerging viruses continue to be a major threat to humans and animals worldwide the need for new therapeutic options intensifies. A wide variety of viruses including Influenza A virus, Human immunodeficiency virus, Middle East respiratory syndrome coronavirus and severe acute respiratory syndrome coronavirus require ion channels for efficient replication. Thus, targeting host ion channels may serve as an effective means to attenuate virus replication and help treat viral diseases. Targeting host ion channels is an attractive therapeutic option because a range of ion channel-blocking compounds already exist for the treatment of other human diseases and some of these possess in vitro and sometimes in vivo antiviral activity. Therefore, identifying the specific ion channels involved in replicative cycles could provide opportunities to repurpose these ion channel inhibitors for treating viral diseases. Furthermore, optimised methodologies for identifying effective ion channel targeting drugs and their mechanisms of action could enable rapid responses to newly emerged viruses. This review discusses the potential of ion channels as suitable drug targets to treat diseases caused by viruses by describing known ion channel targeting drugs including their antiviral activity; by summarising prior research demonstrating the requirement for host ion channels for efficient replication of some viruses; and by hypothesising about the role these drugs might play in our ongoing fight against viral diseases.