Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(10): 2665-2679.e19, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33882274

RESUMO

The bacterial flagellar motor is a supramolecular protein machine that drives rotation of the flagellum for motility, which is essential for bacterial survival in different environments and a key determinant of pathogenicity. The detailed structure of the flagellar motor remains unknown. Here we present an atomic-resolution cryoelectron microscopy (cryo-EM) structure of the bacterial flagellar motor complexed with the hook, consisting of 175 subunits with a molecular mass of approximately 6.3 MDa. The structure reveals that 10 peptides protruding from the MS ring with the FlgB and FliE subunits mediate torque transmission from the MS ring to the rod and overcome the symmetry mismatch between the rotational and helical structures in the motor. The LP ring contacts the distal rod and applies electrostatic forces to support its rotation and torque transmission to the hook. This work provides detailed molecular insights into the structure, assembly, and torque transmission mechanisms of the flagellar motor.


Assuntos
Flagelos/fisiologia , Flagelos/ultraestrutura , Salmonella typhimurium/fisiologia , Microscopia Crioeletrônica , Conformação Proteica , Torque
2.
Mol Microbiol ; 118(6): 716-730, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36308522

RESUMO

The peptidoglycan (PG) layer of bacterial cells is essential for maintaining the cell shape and survival of cells; therefore, the synthesis of PG needs to be spatiotemporally controlled. While it is well established that PG synthesis is mediated posttranslationally through interactions between PG synthases and their cognate partners, much less is known about the transcriptional regulation of genes encoding these synthases. Based on a previous finding that the Gram-negative bacterium Shewanella oneidensis lacking the prominent PG synthase exhibits impaired cell wall integrity, we performed genetic selections to isolate the suppressors. We discovered that disrupting the sspA gene encoding stringent starvation protein A (SspA) is sufficient to suppress compromised PG. SspA serves as a transcriptional repressor that regulates the expression of the two types of PG synthases, class A penicillin-binding proteins and SEDS/bPBP protein complexes. SspA is an RNA polymerase-associated protein, and its regulation involves interactions with the σ70 -RNAP complex and an antagonistic effect of H-NS, a global nucleoid-associated protein. We also present evidence that the regulation of PG synthases by SspA is conserved in Escherichia coli, adding a new dimension to the current understanding of PG synthesis and its regulation.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Proteína Estafilocócica A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Appl Environ Microbiol ; 89(10): e0110823, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732808

RESUMO

c-type Cytochromes (c-Cyts), primarily as electron carriers and oxidoreductases, play a key role in energy transduction processes in virtually all living organisms. Many bacteria, such as Shewanella oneidensis, are particularly rich in c-Cyts, supporting respiratory versatility not seen in eukaryotes. Unfortunately, a large number of c-Cyts are underexplored, and their biological functions remain unknown. In this study, we identify SorCABD of S. oneidensis as a novel sulfite dehydrogenase (SDH), which catalyzes the oxidation of sulfite to sulfate. In addition to catalytic subunit SorA, this enzymatic complex includes three c-Cyt subunits, which all together carry out electron transfer. The electrons extracted from sulfite oxidation are ultimately delivered to oxygen, leading to oxygen reduction, a process relying on terminal oxidase cyt cbb3. Genomic analysis suggests that the homologs of this SDH are present in a small number of bacterial genera, Shewanella and Vibrio in particular. Because these bacteria are generally capable of reducing sulfite under anaerobic conditions, the co-existence of a sulfite oxidation system implies that they may play especially important roles in the transformation of sulfur species in natural environments.Importancec-type Cytochromes (c-Cyts) endow bacteria with high flexibility in their oxidative/respiratory systems, allowing them to extracellularly transform diverse inorganic and organic compounds for survival and growth. However, a large portion of the bacterial c-Cyts remain functionally unknown. Here, we identify three c-Cyts that work together as essential electron transfer partners for the catalytic subunit of a novel SDH in sulfite oxidation in Shewanella oneidensis. This characteristic makes S. oneidensis the first organism known to be capable of oxidizing and reducing sulfite. The findings suggest that Shewanella, along with a small number of other aquatic bacteria, would serve as a particular driving force in the biogeochemical sulfur cycle in nature.


Assuntos
Elétrons , Shewanella , Sulfito Desidrogenase/genética , Transporte de Elétrons , Oxirredução , Citocromos , Shewanella/genética , Oxirredutases , Sulfitos , Oxigênio , Enxofre
4.
Appl Environ Microbiol ; 88(18): e0128922, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36073941

RESUMO

Shewanella oneidensis is the best understood model microorganism for the study of diverse cytochromes (cytos) c that support its unparallel respiratory versatility. Although RNA chaperone Hfq has been implicated in regulation of cyto c production, little is known about the biological pathways that it affects in this bacterium. In this study, from a spontaneous mutant that secretes pyomelanin and has a lowered cyto c content, we identified Hfq to be the regulator that critically associates with both phenotypes in S. oneidensis. We found that expression of the key genes in biosynthesis and degradation of heme is differentially affected by Hfq at under- and overproduced levels, and through modulating heme levels, Hfq influences the cyto c content. Although Hfq in excess results in overproduction of the enzymes responsible for both generation and removal of homogentisic acid (HGA), the precursor of pyomelanin, it is compromised activity of HmgA that leads to excretion and polymerization of HGA to form pyomelanin. We further show that Hfq mediates HmgA activity by lowering intracellular iron content because HmgA is an iron-dependent enzyme. Overall, our work highlights the significance of Hfq-mediated posttranscriptional regulation in the physiology of S. oneidensis, unraveling unexpected mechanisms by which Hfq affects cyto c biosynthesis and pyomelanin production. IMPORTANCE In bacteria, Hfq has been implicated in regulation of diverse biological processes posttranslationally. In S. oneidensis, Hfq affects the content of cytos c that serve as the basis of its respiratory versatility and potential application in bioenergy and bioremediation. In this study, we found that Hfq differentially regulates heme biosynthesis and degradation, leading to altered cyto c contents. Hfq in excess causes a synthetic effect on HmgA, an enzyme responsible for pyomelanin formation. Overall, the data presented manifest that the biological processes in a given bacterium regulated by Hfq are highly complex, amounting to required coordination among multiple physiological aspects to allow cells to respond to environmental changes promptly.


Assuntos
Proteínas HMGA , Shewanella , Citocromos c/metabolismo , Proteínas HMGA/metabolismo , Heme/metabolismo , Ácido Homogentísico/metabolismo , Ferro/metabolismo , Melaninas , RNA/metabolismo , Shewanella/metabolismo
5.
Environ Sci Technol ; 56(9): 5508-5519, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420416

RESUMO

The biotransformation of 2D nanomaterials is still poorly understood, although their environmental fates are becoming an increasing concern with their broad applications. Here, we found that Ti3C2Tx nanosheets, a typical 2D nanomaterial, could be oxidized by reactive oxygen species (ROS) produced by both Gram-negative (Escherichia coli and Shewanella oneidensis) and Gram-positive (Bacillus subtilis) bacteria, with the formation of titanium dioxide (TiO2) on the nanosheet surfaces and impairment of structural integrity. Specifically, Ti3C2Tx nanosheets stimulated bacterial respiration Complex I, leading to increased generation of extracellular O2•- and the formation of H2O2 and •OH via Fenton-like reactions, which intensified the oxidation of the nanosheets. Surface modifications with KOH and hydrazine (HMH), especially HMH, could limit bacterial oxidation of the nanosheets. These findings reveal a common but overlooked process in which oxygen-respiring bacteria are capable of oxidizing 2D nanosheets, providing new knowledge for environmental fate evaluation and future design of functional 2D nanomaterials.


Assuntos
Peróxido de Hidrogênio , Nanoestruturas , Biotransformação , Escherichia coli/metabolismo , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo , Respiração
6.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055165

RESUMO

Nitrite and nitric oxide (NO), two active and critical nitrogen oxides linking nitrate to dinitrogen gas in the broad nitrogen biogeochemical cycle, are capable of interacting with redox-sensitive proteins. The interactions of both with heme-copper oxidases (HCOs) serve as the foundation not only for the enzymatic interconversion of nitrogen oxides but also for the inhibitory activity. From extensive studies, we now know that NO interacts with HCOs in a rapid and reversible manner, either competing with oxygen or not. During interconversion, a partially reduced heme/copper center reduces the nitrite ion, producing NO with the heme serving as the reductant and the cupric ion providing a Lewis acid interaction with nitrite. The interaction may lead to the formation of either a relatively stable nitrosyl-derivative of the enzyme reduced or a more labile nitrite-derivative of the enzyme oxidized through two different pathways, resulting in enzyme inhibition. Although nitrite and NO show similar biochemical properties, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to HCOs. Moreover, as biologically active molecules and signal molecules, nitrite and NO directly affect the activity of different enzymes and are perceived by completely different sensing systems, respectively, through which they are linked to different biological processes. Further attempts to reconcile this apparent contradiction could open up possible avenues for the application of these nitrogen oxides in a variety of fields, the pharmaceutical industry in particular.


Assuntos
Bactérias/enzimologia , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hemeproteínas/metabolismo , Ácidos de Lewis/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430319

RESUMO

Nitrite and nitric oxide (NO) are well-known bacteriostatic agents with similar biochemical properties. However, many studies have demonstrated that inhibition of bacterial growth by nitrite is independent of NO. Here, with Shewanella oneidensis as the research model because of its unusually high cytochrome (cyt) c content, we identify a common mechanism by which nitrite and NO compromise cyt c biosynthesis in bacteria, and thereby inhibit respiration. This is achieved by eliminating the inference of the cyclic adenosine monophosphate-catabolite repression protein (cAMP-Crp), a primary regulatory system that controls the cyt c content and whose activity is subjected to the repression of nitrite. Both nitrite and NO impair the CcmE of multiple bacteria, an essential heme chaperone of the System I cyt c biosynthesis apparatus. Given that bacterial targets of nitrite and NO differ enormously and vary even in the same genus, these observations underscore the importance of cyt c biosynthesis for the antimicrobial actions of nitrite and NO.


Assuntos
Óxido Nítrico , Nitritos , Nitritos/farmacologia , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Heme/metabolismo , Citocromos c , Respiração
8.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142682

RESUMO

Nitric oxide (NO) is an active and critical nitrogen oxide in the microbe-driven nitrogen biogeochemical cycle, and is of great interest to medicine and the biological sciences. As a gas molecule prior to oxygen, NO respiration represents an early form of energy generation via various reactions in prokaryotes. Major enzymes for endogenous NO formation known to date include two types of nitrite reductases in denitrification, hydroxylamine oxidoreductase in ammonia oxidation, and NO synthases (NOSs). While the former two play critical roles in shaping electron transport pathways in bacteria, NOSs are intracellular enzymes catalyzing metabolism of certain amino acids and have been extensively studied in mammals. NO interacts with numerous cellular targets, most of which are redox-active proteins. Doing so, NO plays harmful and beneficial roles by affecting diverse biological processes within bacterial physiology. Here, we discuss recent advances in the field, including NO-forming enzymes, the molecular mechanisms by which these enzymes function, physiological roles of bacterial NOSs, and regulation of NO homeostasis in bacteria.


Assuntos
Amônia , Óxido Nítrico , Aminoácidos/metabolismo , Amônia/metabolismo , Animais , Bactérias/metabolismo , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Óxidos de Nitrogênio/metabolismo , Oxigênio/metabolismo
9.
J Biol Chem ; 295(32): 11118-11130, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32532818

RESUMO

AhpC is a bacterial representative of 2-Cys peroxiredoxins (Prxs) with broad substrate specificity and functional plasticity. However, details underpinning these two important attributes of AhpC remain unclear. Here, we studied the functions and mechanisms of regulation of AhpC in the facultative Gram-negative anaerobic bacterium Shewanella oneidensis, in which AhpC's physiological roles can be conveniently assessed through its suppression of a plating defect due to the genetic loss of a major catalase. We show that successful suppression can be achieved only when AhpC is produced in a dose- and time-dependent manner through a complex mechanism involving activation of the transcriptional regulator OxyR, transcription attenuation, and translation reduction. By analyzing AhpC truncation variants, we demonstrate that reactivity with organic peroxides (OPs) rather than H2O2 is resilient to mutagenesis, implying that OP reduction is the core catalytic function of AhpC. Intact AhpC could be recycled only by its cognate reductase AhpF, and AhpC variants lacking the Prx domain or the extreme C-terminal five residues became promiscuous electron acceptors from the thioredoxin reductase TrxR and the GSH reductase Gor in addition to AhpF, implicating an additional dimension to functional plasticity of AhpC. Finally, we show that the activity of S. oneidensis AhpC is less affected by mutations than that of its Escherichia coli counterpart. These findings suggest that the physiological roles of bacterial AhpCs are adapted to different oxidative challenges, depending on the organism, and that its functional plasticity is even more extensive than previously reported.


Assuntos
Dissulfetos/metabolismo , Peroxidases/metabolismo , Shewanella/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Genes Bacterianos , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo , Shewanella/enzimologia , Shewanella/genética , Especificidade por Substrato
10.
Environ Microbiol ; 23(11): 7056-7072, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34664382

RESUMO

Thiosulfate, an important form of sulfur compounds, can serve as both electron donor and acceptor in various microorganisms. In Shewanella oneidensis, a bacterium renowned for respiratory versatility, thiosulfate reduction has long been recognized but whether it can catalyse thiosulfate oxidation remains elusive. In this study, we discovered that S. oneidensis is capable of thiosulfate oxidation, a process specifically catalysed by two periplasmic cytochrome c (cyt c) proteins, TsdA and TsdB, which act as the catalytic subunit and the electron transfer subunit respectively. In the presence of oxygen, oxidation of thiosulfate has priority over reduction. Intriguingly, thiosulfate oxidation negatively regulates the cyt c content in S. oneidensis cells, largely by reducing intracellular levels of cAMP, which as the cofactor modulates activity of global regulator Crp required for transcription of many cyt c genes. This unexpected finding provides an additional dimension to interplays between the respiration regulator and the respiratory pathways in S. oneidensis. Moreover, the data presented here identified S. oneidensis as the first bacterium known to date owning both functional thiosulfate reductase and dehydrogenase, and importantly, genomics analyses suggested that the number of bacterial species possessing this feature is rather limited.


Assuntos
Shewanella , Tiossulfatos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citocromos c/genética , Oxirredução , Shewanella/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo
11.
Environ Microbiol ; 23(2): 652-668, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32372525

RESUMO

To survive and thrive in harsh and ever-changing environments, intricate mechanisms have evolved for bacterial cells to monitor perturbations impacting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In this study, we report in Shewanella oneidensis a previously undescribed mechanism for the envelope defect resulting from the loss of Arc, a two-component transcriptional regulatory system crucial for respiration. We uncovered σE , a master regulator establishing and maintaining the integrity of the cell envelope in γ-proteobacteria, as the determining factor for the cell envelope defect of the arcA mutant. When ArcA is depleted, σE activity is compromised by enhanced production of anti-σE protein RseA. Surprisingly, S. oneidensis σE is not essential for viability, but becomes so in the absence of ArcA. Furthermore, we demonstrated that there is an interplay between these two regulators as arcA expression is affected by availability of σE . Overall, our results underscore functional interplay of regulatory systems for envelope stress response: although each of the systems may respond to perturbation of particular components of the envelope, they are functionally intertwined, working together to form an interconnected safety net.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Shewanella/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/genética , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Fator sigma/genética , Fatores de Transcrição/metabolismo
12.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005730

RESUMO

The siderophore synthetic system in Shewanella species is able to synthesize dozens of macrocyclic siderophores in vitro with synthetic precursors. In vivo, however, although three siderophores are produced naturally in Shewanella algae B516, which carries a lysine decarboxylase (AvbA) specific for siderophore synthesis, only one siderophore can be detected from many other Shewanella species. In this study, we examined a siderophore-overproducing mutant of Shewanella oneidensis which lacks an AvbA counterpart, and we found that it can also produce these three siderophores. We identified both SpeC and SpeF as promiscuous decarboxylases for both lysine and ornithine to synthesize the siderophore precursors cadaverine and putrescine, respectively. Intriguingly, putrescine is mainly synthesized from arginine through an arginine decarboxylation pathway in a constitutive manner, not liable to the concentrations of iron and siderophores. Our results provide further evidence that the substrate availability plays a determining role in siderophore production. Furthermore, we provide evidence to suggest that under iron starvation conditions, cells allocate more putrescine for siderophore biosynthesis by downregulating the expression of the enzyme that transforms putrescine into spermidine. Overall, this study provides another example of the great flexibility of bacterial metabolism that is honed by evolution to better fit living environments of these bacteria.IMPORTANCE The simultaneous production of multiple siderophores is considered a general strategy for microorganisms to rapidly adapt to their ever-changing environments. In this study, we show that some Shewanella spp. may downscale their capability for siderophore synthesis to facilitate adaptation. Although S. oneidensis lacks an enzyme specifically synthesizing cadaverine, it can produce it by using promiscuous ornithine decarboxylases. Despite this ability, this bacterium predominately produces the primary siderophore while restraining the production of secondary siderophores by regulating substrate availability. In addition to using the arginine decarboxylase (ADC) pathway for putrescine synthesis, cells optimize the putrescine pool for siderophore production. Our work provides an insight into the coordinated synthesis of multiple siderophores by harnessing promiscuous enzymes in bacteria and underscores the importance of substrate pools for the biosynthesis of natural products.


Assuntos
Shewanella/enzimologia , Sideróforos/biossíntese , Adaptação Fisiológica , Mutação , Shewanella/metabolismo
13.
J Biol Chem ; 293(11): 4085-4096, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29367341

RESUMO

It is well-established that OxyR functions as a transcriptional activator of the peroxide stress response in bacteria, primarily based on studies on Escherichia coli Recent investigations have revealed that OxyRs of some other bacteria can regulate gene expression through both repression and activation or repression only; however, the underlying mechanisms remain largely unknown. Here, we demonstrated in γ-proteobacteriumShewanella oneidensis regulation of OxyR on expression of major catalase gene katB in a dual-control manner through interaction with a single site in the promoter region. Under non-stress conditions, katB expression was repressed by reduced OxyR (OxyRred), whereas when oxidized, OxyR (OxyRoxi) outcompeted OxyRred for the site because of substantially enhanced affinity, resulting in a graded response to oxidative stress, from repression to derepression to activation. The OxyR-binding motif is characterized as a combination of the E. coli motif (tetranucleotides spaced by heptanucleotide) and palindromic structure. We provided evidence to suggest that the S. oneidensis OxyR regulon is significantly contracted compared with those reported, probably containing only five members that are exclusively involved in oxygen reactive species scavenging and iron sequestering. These characteristics probably reflect the adapting strategy of the bacteria that S. oneidensis represents to thrive in redox-stratified microaerobic and anaerobic environments.


Assuntos
Proteínas de Bactérias/metabolismo , Catalase/metabolismo , Regulon , Proteínas Repressoras/metabolismo , Shewanella/genética , Shewanella/metabolismo , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Oxirredução , Estresse Oxidativo , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Shewanella/crescimento & desenvolvimento , Fatores de Transcrição/genética
14.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31585997

RESUMO

c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts cIMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.


Assuntos
Bactérias/metabolismo , Citocromos c/metabolismo , Shewanella/metabolismo , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cisteína/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Mutagênese , Mutação , Oxirredução , Oxirredutases/metabolismo , Oxigênio , Isomerases de Dissulfetos de Proteínas/metabolismo , Shewanella/enzimologia , Shewanella/genética
15.
Appl Environ Microbiol ; 85(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31444207

RESUMO

The thioredoxin (Trx) and glutaredoxin (Grx) antioxidant systems are deeply involved in bacterial response to oxidative stress, but to date, we know surprisingly little about the roles of these systems in response to reactive oxygen species (ROS) other than hydrogen peroxide (H2O2). In this study, we used Shewanella oneidensis, an environmental bacterium, as a research model to investigate the roles of Trx and Grx in oxidative stress response because it has functionally intertwined ROS responsive regulators OxyR and OhrR. We found that Trx1 is the major thiol/disulfide redox system and that in its absence a Grx system becomes essential under normal conditions. Although overshadowed by Trx1 in the wild type, Trx2 can fully replace Trx1 in physiology when overproduced. Trx1 is required for OxyR to function as a repressor but, more importantly, plays a critical role in the cellular response to organic peroxide (OP) by mediating the redox status of OhrR but not OP scavenger OhrA. While none of the trx and grx genes are OxyR dependent, trxA and trxC are affected by OhrR indirectly. Additional data suggest that depletion of glutathione is likely the cue to trigger induced expression of trxA and trxC These findings underscore the particular importance of Trx in the bacterial OP stress response.IMPORTANCE The Trx and Grx systems are deeply involved in bacterial responses to H2O2-induced oxidative stress. However, little is known about their roles in response to other ROS, such as organic peroxides (OPs). In this study, we used S. oneidensis as a research model to investigate the interplay between Trx/Grx and OxyR/OhrR. We show that Trxs mediate the redox status of transcriptional OP-responding regulator OhrR. Although none of the trx or grx genes are directly controlled by OxyR or OhrR, expression of trxA and trxC is induced by tert-butyl hydroperoxide (t-BHP). We further show that the trxA and trxC genes respond to effects of glutathione (GSH) depletion rather than oxidation. These findings underscore the particular importance of Trx in the bacterial OP stress response.


Assuntos
Hidrogênio/metabolismo , Peróxidos/metabolismo , Shewanella/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Testes de Sensibilidade Microbiana , Mutagênese , Mutação , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Shewanella/efeitos dos fármacos , Shewanella/genética , Tiorredoxinas/genética , terc-Butil Hidroperóxido/metabolismo , terc-Butil Hidroperóxido/farmacologia
16.
J Bacteriol ; 200(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29358496

RESUMO

In some bacteria with a polar flagellum, an established regulatory hierarchy controlling stepwise assembly of the organelle consists of four regulators: FlrA, σ54, FlrBC, and σ28 Because all of these regulators mediate the expression of multiple targets, they are essential to the assembly of a functional flagellum and therefore to motility. However, this is not the case for the gammaproteobacterium Shewanella oneidensis: cells lacking FlrB, FlrC, or both remain flagellated and motile. In this study, we unravel the underlying mechanism, showing that FlrA and FlrC are partially substitutable for each other in regulating flagellar assembly. While both regulators are bacterial enhancer binding proteins (bEBPs) for σ54, FlrA differs from FlrC in its independence of σ54 for its own transcription and its inability to activate the flagellin gene flaA These differences largely account for the distinct phenotypes resulting from the loss or overproduction of FlrA and FlrC.IMPORTANCE The assembly of a polar flagellum in bacteria has been characterized as relying on four regulators, FlrA, σ54, FlrBC, and σ28, in a hierarchical manner. They all are essential to the process and therefore to motility, except in S. oneidensis, in which FlrB, FlrC, or both together are not essential. Here we show that FlrA and FlrC, as bEBPs, are partially reciprocal in functionality in this species. As a consequence, the presence of one allows flagellar assembly and motility in the other's absence. Despite this, there are significant differences in the physiological roles played by these two regulators: FlrA is the master regulator of flagellar assembly, whereas FlrC fine-tunes motility. These intriguing observations open up a new avenue to further exploration of the regulation of flagellar assembly.


Assuntos
Proteínas de Bactérias/genética , Flagelos/genética , Regulação Bacteriana da Expressão Gênica , Shewanella/genética , Proteínas de Ligação a DNA/metabolismo , Flagelos/fisiologia , Flagelina/genética , Flagelina/metabolismo , Movimento , Regiões Promotoras Genéticas , Shewanella/fisiologia , Fator sigma/genética , Fator sigma/metabolismo , Transcrição Gênica
17.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934335

RESUMO

Nitric oxide (NO) is a radical gas that reacts with various biological molecules in complex ways to inhibit growth as a bacteriostatic agent. NO is nearly ubiquitous because it can be generated both biotically and abiotically. To protect the cell from NO damage, bacteria have evolved many strategies, with the production of detoxifying enzymatic systems being the most efficient. Here, we report that c-type cytochromes (cytochromes c) constitute a primary NO protection system in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility due to its high cytochrome c content. By using mutants producing cytochromes c at varying levels, we found that the content of these proteins is inversely correlated with the growth inhibition imposed by NO, whereas the effect of each individual cytochrome c is negligible. This NO-protecting system has no effect on nitrite inhibition. In the absence of cytochromes c, other NO targets and protective proteins, such as NnrS, emerge to show physiological influences during the NO stress. We further demonstrate that cytochromes c also play a similar role in Escherichia coli, albeit only modestly. Our data thus identify the in vivo function of an important group of proteins in alleviating NO stress.IMPORTANCE It is widely accepted that the antibacterial effects of nitrite are attributable to nitric oxide (NO) formation, suggesting a correlation of bacterial susceptibilities to these two chemicals. However, compared to E. coli, S. oneidensis is highly sensitive to nitrite but resistant to NO, implying the presence of robust NO-protective systems. Here, we show that c-type cytochromes (cytochromes c) play a main role in protecting S. oneidensis against damages from NO but not from nitrite. In their absence, impacts of proteins that promote NO tolerance and that are targets of NO inhibition become evident. Our data thus reveal the specific activity of cytochromes c in alleviating the stress caused by NO but not nitrite.


Assuntos
Citocromos c/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Nitritos/farmacologia , Shewanella/metabolismo , Citocromos c/genética , Elementos de DNA Transponíveis/genética , Nitrito Redutases/genética , Nitritos/metabolismo , Oxirredução/efeitos dos fármacos , Plasmídeos/genética , Shewanella/genética , Shewanella/crescimento & desenvolvimento
18.
Appl Environ Microbiol ; 84(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29427425

RESUMO

Iron, a major protein cofactor, is essential for most organisms but can simultaneously be toxic. Iron homeostasis thus has to be effectively maintained under a range of iron regimes. This may be particularly true with Shewanella oneidensis, a representative of dissimilatory metal-reducing bacteria (DMRB), which are capable of respiring a variety of chemicals as electron acceptors (EAs), including iron ores. Although iron respiration and its regulation have been extensively studied in this bacterium, how iron homeostasis is maintained remains largely unknown. Here, we report that the loss of the iron homeostasis master regulator Fur negatively affects the respiration of all EAs tested. This defect appears mainly to be a result of reduced cytochrome c (cyt c) production, despite a decrease in the expression of reductases that are under the direct control of Fur. We also show that S. oneidensis Fur interacts with canonical Fur box motifs in F-F-x-R configuration rather than the palindromic motif proposed before. The fur mutant has lowered total iron and increased free iron contents. Under iron-rich conditions, overproduction of the major iron storage protein Bfr elevates the total iron levels of the fur mutant over those of the wild-type but does not affect free iron levels. Intriguingly, such an operation only marginally improves cyt c production by affecting heme b biosynthesis. It is established that iron dictates heme b/cyt c biosynthesis in S. oneidensisfur+ strains, but the fur mutation annuls the dependence of heme b/cyt c biosynthesis on iron. Overall, our results suggest that Fur has a profound impact on the iron homeostasis of S. oneidensis, through which many physiological processes, especially respiration, are transformed.IMPORTANCE Iron reduction is a signature of S. oneidensis, and this process relies on a large number of type c cytochromes, which per se are iron-containing proteins. Thus, iron plays an essential and special role in iron respiration, but to date, the nature of iron metabolism and regulation of the bacterium remains largely unknown. In this study, we investigated impacts of Fur, the master regulator of iron homeostasis, on respiration. The loss of Fur causes a general defect in respiration, a result of impaired cyt c production rather than specific regulation. Additionally, the fur mutant is unresponsive to iron, resulting in imbalanced iron homeostasis and dissociation between iron and cyt c production. These findings provide important insights into the iron biology of DMRB.


Assuntos
Proteínas de Bactérias/genética , Heme/biossíntese , Ferro/metabolismo , Proteínas Repressoras/genética , Shewanella/fisiologia , Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação , Proteínas Repressoras/metabolismo
19.
Appl Environ Microbiol ; 84(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30097446

RESUMO

Shewanella oneidensis is an extensively studied bacterium capable of respiring minerals, including a variety of iron ores, as terminal electron acceptors (EAs). Although iron plays an essential and special role in iron respiration of S. oneidensis, little has been done to date to investigate the characteristics of iron transport in this bacterium. In this study, we found that all proteins encoded by the pub-putA-putB cluster for putrebactin (S. oneidensis native siderophore) synthesis (PubABC), recognition-transport of Fe3+-putrebactin across the outer membrane (PutA), and reduction of ferric putrebactin (PutB) are essential to putrebactin-mediated iron uptake. Although homologs of PutA are many, none can function as its replacement, but some are able to work with other bacterial siderophores. We then showed that Fe2+-specific Feo is the other primary iron uptake system, based on the synthetical lethal phenotype resulting from the loss of both iron uptake routes. The role of the Feo system in iron uptake appears to be more critical, as growth is significantly impaired by the absence of the system but not of putrebactin. Furthermore, we demonstrate that hydroxyl acids, especially α-types such as lactate, promote iron uptake in a Feo-dependent manner. Overall, our findings underscore the importance of the ferrous iron uptake system in metal-reducing bacteria, providing an insight into iron homeostasis by linking these two biological processes.IMPORTANCES. oneidensis is among the first- and the best-studied metal-reducing bacteria, with great potential in bioremediation and biotechnology. However, many questions regarding mechanisms closely associated with those applications, such as iron homeostasis, including iron uptake, export, and regulation, remain to be addressed. Here we show that Feo is a primary player in iron uptake in addition to the siderophore-dependent route. The investigation also resolved a few puzzles regarding the unexpected phenotypes of the putA mutant and lactate-dependent iron uptake. By elucidating the physiological roles of these two important iron uptake systems, this work revealed the breadth of the impacts of iron uptake systems on the biological processes.


Assuntos
Ferro/metabolismo , Putrescina/análogos & derivados , Shewanella/genética , Shewanella/metabolismo , Succinatos/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Homeostase , Proteínas de Membrana/genética , Putrescina/metabolismo , Sideróforos/genética , Sideróforos/metabolismo
20.
Appl Environ Microbiol ; 84(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29654177

RESUMO

Nitrite has been used as a bacteriostatic agent for centuries in food preservation. It is widely accepted that this biologically inert molecule functions indirectly, serving as a stable reservoir of bioactive nitric oxide (NO) and other reactive nitrogen species to impact physiology. As a result, to date, we know surprisingly little about in vivo targets of nitrite. Here, we carry out comparative analyses of nitrite and NO physiology in Escherichia coli and in Shewanella oneidensis, a Gram-negative environmental bacterium renowned for respiratory versatility. These two bacteria differ from each other in many aspects of nitrite and NO physiology, including NO generation, NO degradation, and unexpectedly, their contrary susceptibility to nitrite and NO. In cell extracts of both bacteria, most of the NO targets are also susceptible to nitrite, and vice versa. However, with respect to growth inhibition caused by NO, the targets are impacted distinctly; NO targets are responsible for the inhibition of growth of E. coli but not of S. oneidensis More surprisingly, all proteins identified to be implicated in NO tolerance in other bacteria appear to play a dispensable role in protecting S. oneidensis against NO. These data suggest that S. oneidensis is equipped with a robust but yet unknown NO protecting system. In the case of nitrite, it is clear that the target of physiological significance in both bacteria is cytochrome heme-copper oxidase.IMPORTANCE Nitrite is toxic to living organisms at high levels, but such antibacterial effects of nitrite are attributable to the formation of nitric oxide (NO), a highly reactive radical gas molecule. Here, we report that Shewanella oneidensis is highly resistant to NO but sensitive to nitrite compared to Escherichia coli by approximately 4-fold. In both bacteria, nitrite inhibits bacterial growth by targeting cytochrome heme-copper oxidase. In contrast, the targets of NO are diverse. Although these targets are similar in E. coli and S. oneidensis, they are responsible for growth inhibition caused by NO in the former but not in the latter. Overall, the presented data, along with the previous data, solidify a proposal that the in vivo targets of NO and nitrite in bacteria are largely different.


Assuntos
Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Shewanella/metabolismo , Proteínas de Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa