Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(17): 9520-9529, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37076447

RESUMO

Covalent organic frameworks (COFs) hold the potential in converting CO2 with water into value-added fuels and O2 to save the deteriorating ecological environment. However, reaching high yield and selectivity is a grand challenge under metal-, photosensitizer-, or sacrificial reagent-free conditions. Here, inspired by microstructures of natural leaves, we designed triazine-based COF membranes with the integration of steady light-harvesting sites, efficient catalytic center, and fast charge/mass transfer configuration to fabricate a novel artificial leaf for the first time. Significantly, a record high CO yield of 1240 µmol g-1 in a 4 h reaction, approximately 100% selectivity, and a long lifespan (at least 16 cycles) were achieved under gas-solid conditions without using any metal, photosensitizer, or sacrificial reagent. Unlike the existing knowledge, the chemical structural unit of triazine-imide-triazine and the unique physical form of the COF membrane are predominant for such a remarkable photocatalysis. This work opens a new pathway to simulating photosynthesis in leaves and may motivate relevant research in the future.

2.
Chemistry ; 29(27): e202300222, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36788109

RESUMO

In recent years, light-responsive molecules have been incorporated in metal-organic frameworks (MOFs) to fabricate light-responsive intelligent devices, where reversible isomerization of the guest molecules in the nanopores is crucial. However, how to design a porous environment of MOFs to achieve a reversible isomerization remains unknown until now. In this work, donor-acceptor Stenhouse adducts (DASAs), a new kind of visible light responsive compound, were confined in the nanopores of different MOFs to study their isomerization upon visible-light irradiation/mild heating. We found that the polarity of the pore environment is the key to control the reversibility of isomerization of such guest molecules. Under the guidance of this principle, MIL-53(Al) was screened to investigate the proton conductivity and switching performance of the DASA-confined MOF. The proton conductance was up to 0.013 S cm-1 at 80 °C and 98 % RH, and at least 30 switching cycles were achieved thanks to the Grotthuss-type mechanism and the low polarity of MIL-53(Al) pore environment.

3.
Angew Chem Int Ed Engl ; 57(14): 3687-3691, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29430813

RESUMO

Carbon dots (CDs) have attracted increasing attention in applications such as bio-imaging, sensors, catalysis, and drug delivery. However, unlike metallic and semiconductor nanoparticles, the transfer of CDs between polar and non-polar phases is little understood. A class of amine-terminated CDs is developed and their phase transfer behavior has been investigated. It is found that these CDs can reversibly transfer between aqueous and organic solvents by alternatively bubbling and removing CO2 at atmospheric pressure. The mechanism of such CO2 -switched phase transfer involves reversible acid-base reaction of amine-terminated CDs with CO2 and the reversible formation of hydrophilic ammonium salts. By using the CDs as catalysts, the phase transfer is applied in the Knoevenagel reaction for efficient homogeneous reaction, heterogeneous separation, and recycling of the catalysts.

4.
Nat Commun ; 14(1): 1147, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854683

RESUMO

Cobalt coordinated covalent organic frameworks have attracted increasing interest in the field of CO2 photoreduction to CO, owing to their high electron affinity and predesigned structures. However, achieving high conversion efficiency is challenging since most Co related coordination environments facilitate fast recombination of photogenerated electron-hole pairs. Here, we design two kinds of Co-COF catalysts with oxygen coordinated Co atoms and find that after tuning of coordination environment, the reported Co framework catalyst with Co-O4 sites exhibits a high CO production rate of 18000 µmol g-1 h-1 with selectivity as high as 95.7% under visible light irradiation. From in/ex-situ spectral characterizations and theoretical calculations, it is revealed that the predesigned Co-O4 sites significantly facilitate the carrier migration in framework matrixes and inhibit the recombination of photogenerated electron-hole pairs in the photocatalytic process. This work opens a way for the design of high-performance catalysts for CO2 photoreduction.

5.
J Phys Chem Lett ; 14(36): 8165-8174, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37671781

RESUMO

Covalent organic frameworks (COFs) have regular channels that can accommodate guest molecules to provide highly conductive solid electrolytes. However, designing smart, conductive COFs remains a great challenge. Herein, we report the first example of PEG-functionalized ionic liquids (ILs) anchored on the COF walls by strong hydrogen bonding to fabricate thermally responsive COFs (ILm@COF). We found that similar to the traditional IL/water mixture, the ILs undergo lower critical solution temperature (LCST)-type phase behavior within COF nanopores under high moisture levels. However, the phase separation temperature of aqueous IL decreases in COF channels due to the strong interaction between the IL and COF. Thus, the proton conductivity of ILm@COF can be reversibly switched by phase miscibility and separation in COF nanopores, and there is no obvious decrease even after 20 switching cycles. Our work provides important clues for understanding liquid-liquid phase separation in a confined nanospace and opens a new pathway to switchable proton conductivity.

6.
ACS Appl Mater Interfaces ; 13(30): 36507-36516, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309368

RESUMO

Covalent organic frameworks (COFs) are highly porous crystalline polymers with uniform pores and large surface areas. Combined with their modular design principle and excellent properties, COFs are an ideal candidate for separation membranes. Liquid-liquid interfacial polymerization is a well-known approach to synthesize membranes by reacting two monomers at the interface. However, volatile organic solvents are usually used, which may disturb the liquid-liquid interface and affect the COF membrane crystallinity due to solvent evaporation. Simultaneously, the domain size of the organic solvent-water interface, named the reaction zone, can hardly be regulated, and the diffusion control of monomers for favorable crystallinity is only achieved in the water phase. These drawbacks may limit the widespread applications of liquid-liquid interfacial polymerization to synthesize diverse COF membranes with different functionalities. Here, we report a facile strategy to synthesize a series of imine-linked freestanding COF membranes with different thicknesses and morphologies at tunable ionic liquid (IL)-H2O interfaces. Due to the H-bonding of the catalysts with amine monomers and the high viscosity of the ILs, the diffusion of the monomers was simultaneously controlled in water and in ILs. This resulted in the exceptionally high crystallinity of freestanding COF membranes with a Brunauer-Emmett-Teller (BET) surface area up to 4.3 times of that synthesized at a dichloromethane-H2O interface. By varying the alkyl chain length of cations in the ILs, the interfacial region size and interfacial tension could be regulated to further improve the crystallinity of the COF membranes. As a result, the as-fabricated COF membranes exhibited ultrahigh permeance toward water and organic solvents and excellent selective rejection of dyes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa