Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6010-6016, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739874

RESUMO

Planar double heterostructures were initially investigated and have been successfully applied in III-V semiconductor lasers due to their excellent roles in confining both the photons and carriers. Here, we design and fabricate a (PEA)2Csn-1PbnX3n+1 (quasi-2D)/CsPbBr3 QD/quasi-2D double-heterostructure sandwiched in a 3/2 λ DBR microcavity, and then demonstrate a single-mode pure-green lasing with a threshold of 53.7 µJ/cm2 under nanosecond-pulsed optical pumping. The thresholds of these heterostructure devices decrease statistically by about 50% compared to the control group with no energy donor layers, PMMA/QD/PMMA in an identical microcavity. We show that there is efficient energy transfer from the barrier regions of the quasi-2D phases to the QD layer by transient absorption and luminescence lifetime spectra and that such energy transfer leads to marked threshold reduction. This work indicates that the double-heterostructure configurations should play a significant role in the future perovskite electrically pumped laser.

2.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

3.
Small ; 20(24): e2309953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38152900

RESUMO

With the rapid development of integrated circuits, there is an increasing need to boost transistor density. In addition to shrinking the device size to the atomic scale, vertically stacked interlayer interconnection technology is also an effective solution. However, realizing large-scale vertically interconnected complementary field-effect transistors (CFETs) has never been easy. Currently-used semiconductor channel synthesis and doping technologies often suffer from complex fabrication processes, poor vertical integration, low device yield, and inability to large-scale production. Here, a method to prepare large-scale vertically interconnected CFETs based on a thermal evaporation process is reported. Thermally-evaporated etching-free Te and Bi2S3 serve as p-type and n-type semiconductor channels and exhibit FET on-off ratios of 103 and 105, respectively. The vertically interconnected CFET inverter exhibits a clear switching behavior with a voltage gain of 17 at a 4 V supply voltage and a device yield of 100%. Based on the ability of thermal evaporation to prepare large-scale uniform semiconductor channels on arbitrary surfaces, repeated upward manufacturing can realize multi-level interlayer interconnection integrated circuits.

4.
J Chem Phys ; 160(17)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38748025

RESUMO

Determining the correlation between the size of a single quantum dot (QD) and its photoluminescence (PL) properties is a challenging task. In the study, we determine the size of each QD by measuring its absorption cross section, which allows for accurate investigation of size-dependent PL blinking mechanisms and volume scaling of the biexciton Auger recombination at the single-particle level. A significant correlation between the blinking mechanism and QD size is observed under low excitation conditions. When the QD size is smaller than their Bohr diameter, single CsPbI3 perovskite QDs tend to exhibit BC-blinking, whereas they tend to exhibit Auger-blinking when the QD size exceeds their Bohr diameter. In addition, by extracting bright-state photons from the PL intensity trajectories, the effects of QD charging and surface defects on the biexcitons are effectively reduced. This allows for a more accurate measurement of the volume scaling of biexciton Auger recombination in weakly confined CsPbI3 perovskite QDs at the single-dot level, revealing a superlinear volume scaling (τXX,Auger ∝ σ1.96).

5.
Nano Lett ; 23(18): 8643-8649, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37672749

RESUMO

Understanding ultrafast electronic dynamics of the interlayer excitonic states in atomically thin transition metal dichalcogenides is of importance in engineering valleytronics and developing excitonic integrated circuits. In this work, we experimentally explored the ultrafast dynamics of indirect interlayer excitonic states in monolayer type II WSe2/ReS2 heterojunctions using time-resolved photoemission electron microscopy, which reveals its anisotropic behavior. The ultrafast cooling and decay of excited-state electrons exhibit significant linear dichroism. The ab initio theoretical calculations provide unambiguous evidence that this linear dichroism result is primarily associated with the anisotropic nonradiative recombination of indirect interlayer excitonic states. Measuring time-resolved photoemission energy spectra, we have further revealed the ultrafast evolution of excited-state electrons in anisotropic indirect interlayer excitonic states. The findings have important implications for controlling the interlayer moiré excitonic effects and designing anisotropic optoelectronic devices.

6.
Nano Lett ; 23(16): 7327-7333, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37535438

RESUMO

We experimentally study photoemission from gold nanodisk arrays using space-, time-, and energy-resolved photoemission electron microscopy. When excited by a plasmonic resonant infrared (IR) laser pulse, plasmonic hotspots are generated owing to local surface plasmon resonance. Photoelectrons emitted from each plasmonic hotspot form a nanoscale and ultrashort electron pulse. When the system is excited by an extreme ultraviolet (EUV) laser pulse, a uniformly distributed photoelectron cloud is formed across the sample surface. When excited by the IR and EUV laser pulses together, both the photoemission image and kinetic energy vary significantly for the IR laser-generated electrons depending on the time delay between the two laser pulses. These observations are well explained by the Coulomb interaction with the EUV laser-generated electron cloud. Our study offers a feasible approach to manipulate the energy of electron pulse emitted from a plasmonic nanostructure on an ultrafast time scale.

7.
Nano Lett ; 23(20): 9547-9554, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37816225

RESUMO

Exploring ultrafast carrier dynamics is crucial for the materials' fundamental properties and device design. In this work, we employ time- and energy-resolved photoemission electron microscopy with tunable pump wavelengths from visible to near-infrared to reveal the ultrafast carrier dynamics of the elemental semiconductor tellurium. We find that two discrete sub-bands around the Γ point of the conduction band are involved in excited-state electron ultrafast relaxation and reveal that hot electrons first go through ultrafast intra sub-band cooling on a time scale of about 0.3 ps and then transfer from the higher sub-band to the lower one on a time scale of approximately 1 ps. Additionally, theoretical calculations reveal that the lower one has flat-band characteristics, possessing a large density of states and a long electron lifetime. Our work demonstrates that TR- and ER-PEEM with broad tunable pump wavelengths are powerful techniques in revealing the details of ultrafast carrier dynamics in time and energy domains.

8.
Phys Rev Lett ; 131(18): 186901, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977607

RESUMO

Transition metal dichalcogenide heterostructures have been extensively studied as a platform for investigating exciton physics. While heterobilayers such as WSe_{2}/MoSe_{2} have received significant attention, there has been comparatively less research on heterotrilayers, which may offer new excitonic species and phases, as well as unique physical properties. In this Letter, we present theoretical and experimental investigations on the emission properties of quadrupolar excitons (QXs), a newly predicted type of exciton, in a WSe_{2}/MoSe_{2}/WSe_{2} heterotrilayer device. Our findings reveal that the optical brightness or darkness of QXs is determined by horizontal mirror symmetry and valley and spin selection rules. Additionally, the emission intensity and energy of both bright and dark QXs can be adjusted by applying an out-of-plane electric field, due to changes in hole distribution and the Stark effect. These results not only provide experimental evidence for the existence of QXs in heterotrilayers but also uncover their novel properties, which have the potential to drive the development of new exciton-based applications.

9.
Nano Lett ; 22(13): 5175-5181, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35714056

RESUMO

Recently, exciton-polaritons in lead halide perovskite microcavities have been extensively investigated to address striking phenomena such as polariton condensation and quantum emulation. However, a critical step in advancing these findings into practical applications, i.e., realizing electrically pumped perovskite polariton light-emitting devices, has not yet been presented. Here, we devise a new method to combine the device with a microcavity and report the first halide perovskite polariton light-emitting device. Specifically, the device is based on a CsPbBr3 capacitive structure, which can inject the electrons and holes from the same electrode, conducive to the formation of excitons and simultaneously maintaining the high quality of the microcavity. In addition, highly polarized polariton emissions have been demonstrated due to the optical birefringence in the CsPbBr3 microplate. This work paves the way for realizing practical polaritonic devices such as high-speed light-emitting devices for information communications and inversionless electrically pumped lasers based on perovskites.

10.
J Am Chem Soc ; 144(27): 12247-12260, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767659

RESUMO

The electron-phonon (e-ph) interaction in lead halide perovskites (LHPs) plays a role in a variety of physical phenomena. Unveiling how the local lattice distortion responds to charge carriers is a critical step toward understanding the e-ph interaction in LHPs. Herein, we advance a fundamental understanding of the e-ph interaction in LHPs from the perspective of stereochemical activity of 6s2 lone-pair electrons on the Pb2+ cation. We demonstrate a model system based on three LHPs with distinctive lone-pair activities for studying the structure-property relationships. By tuning the A-cation chemistry, we synthesized single-crystal CsPbBr3, (MA0.13EA0.87)PbBr3 (MA+ = methylammonium; EA+ = ethylammonium), and (MHy)PbBr3 (MHy+ = methylhydrazinium), which exhibit stereo-inactive, dynamic stereo-active, and static stereo-active lone pairs, respectively. This gives rise to distinctive local lattice distortions and low-frequency vibrational modes. We find that the e-ph interaction leads to a blue shift of the band gap as temperature increases in the structure with the dynamic stereo-active lone pair but to a red shift in the structure with the static stereo-active lone pair. Furthermore, analyses of the temperature-dependent low-energy photoluminescence tails reveal that the strength of the e-ph interaction increases with increasing lone-pair activity, leading to a transition from a large polaron to a small polaron, which has significant influence on the emission spectra and charge carrier dynamics. Our results highlight the role of the lone-pair activity in controlling the band gap, phonon, and polaronic effect in LHPs and provide guidelines for optimizing the optoelectronic properties, especially for tin-based and germanium-based halide perovskites, where stereo-active lone pairs are more prominent than their lead counterparts.

11.
Small ; 18(44): e2204120, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36135780

RESUMO

Colloidal semiconductor CdSe nanoplatelets (NPLs) feature ultranarrow and anisotropic emissions. However, the optical performance of blue-emitting NPLs is deteriorated by trap states, currently exhibiting tainted emissions and inferior photoluminescence quantum yields (PLQYs). Here, near trap-free blue-emitting NPLs are achieved by the controlled growth of the core/crown. Deep trap states in NPLs can be partially suppressed with the asymmetrical crown growth and are further suppressed with the growth of the small core and the alloyed symmetrical crown, yielding NPLs with pure blue emissions and near-unity PLQYs. Exciton dynamic research based on these NPLs indicates that the trap emission stems from surface traps. Besides, light-emitting diodes exhibiting ultranarrow emission centered around 461 nm with full-width-at-half-maximums down to 11 nm are fabricated using these NPLs.

12.
BMC Womens Health ; 22(1): 470, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434592

RESUMO

BACKGROUND: Pentamidine has been reported to have many pharmacological effects including anti- protozoal, anti-inflammatory, and anti-tumor activities. The aim of this study is to investigate the potential therapeutic role of Pentamidine and molecular mechanisms of Pentamidine on PI3K/AKT signaling pathway underlying the anti-tumor properties in endometrial cancer. METHODS: Our study was carried out in the central laboratory of Harbin Medical University from 2019 to 2021. Human endometrial cancer cell lines Ishikawa and HEC-1A were treated with Pentamidine. The proliferation ability of cells was investigated by MTS and colony formation assays. The cell cycle distribution was detected by flow cytometry. Cell migration and invasion were analyzed by using the wound healing assay and Transwell assay. Western blotting was performed to measure the levels of AKT, p-AKT, MMP-2, and MMP-9. RESULTS: Our results revealed that treatment of Pentamidine inhibited proliferation, migration and invasion of Ishikawa and HEC-1A endometrial cancer cells. Mechanistic investigation showed that Pentamidine inhibited PI3K/AKT signaling pathway and also reduced the expression of MMP-2 and MMP-9. In addition, co-treatment with PI3K kinase inhibitor LY294002 and Pentamidine leaded to increased repression of cell viability and the protein expression of p-AKT in Ishikawa cells. CONCLUSIONS: Pentamidine suppresses PI3K/AKT signaling pathway, and inhibits proliferation, migration and invasion of EC cells. These findings suggested that Pentamidine might be a potential candidate for treating EC through PI3K/AKT pathway.


Assuntos
Neoplasias do Endométrio , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/uso terapêutico , Pentamidina/farmacologia , Pentamidina/uso terapêutico , Proliferação de Células , Transdução de Sinais , Neoplasias do Endométrio/patologia
13.
J Cell Mol Med ; 25(18): 8997-9010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34402164

RESUMO

It is noteworthy that prolonged cardiac structural changes and excessive fibrosis caused by myocardial infarction (MI) seriously interfere with the treatment of heart failure in clinical practice. Currently, there are no effective and practical means of either prevention or treatment. Thus, novel therapeutic approaches are critical for the long-term quality of life of individuals with myocardial ischaemia. Herein, we aimed to explore the protective effect of H2 , a novel gas signal molecule with anti-oxidative stress and anti-inflammatory effects, on cardiac remodelling and fibrosis in MI rats, and to explore its possible mechanism. First, we successfully established MI model rats, which were then exposed to H2 inhalation with 2% concentration for 28 days (3 hours/day). The results showed that hydrogen gas can significantly improve cardiac function and reduce the area of cardiac fibrosis. In vitro experiments further proved that H2 can reduce the hypoxia-induced damage to cardiomyocytes and alleviate angiotensin II-induced migration and activation of cardiac fibroblasts. In conclusion, herein, we illustrated for the first time that inhalation of H2 ameliorates myocardial infarction-induced cardiac remodelling and fibrosis in MI rats and exert its protective effect mainly through inhibiting NLRP3-mediated pyroptosis.


Assuntos
Fibrose/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Hidrogênio , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Masculino , Miócitos Cardíacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
14.
Brain ; 143(3): 811-832, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125365

RESUMO

Cyclin-dependent kinase-like 5 disorder is a severe neurodevelopmental disorder caused by mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. It predominantly affects females who typically present with severe early epileptic encephalopathy, global developmental delay, motor dysfunction, autistic features and sleep disturbances. To develop a gene replacement therapy, we initially characterized the human CDKL5 transcript isoforms expressed in the brain, neuroblastoma cell lines, primary astrocytes and embryonic stem cell-derived cortical interneurons. We found that the isoform 1 and to a lesser extent the isoform 2 were expressed in human brain, and both neuronal and glial cell types. These isoforms were subsequently cloned into recombinant adeno-associated viral (AAV) vector genome and high-titre viral vectors were produced. Intrajugular delivery of green fluorescence protein via AAV vector serotype PHP.B in adult wild-type male mice transduced neurons and astrocytes throughout the brain more efficiently than serotype 9. Cdkl5 knockout male mice treated with isoform 1 via intrajugular injection at age 28-30 days exhibited significant behavioural improvements compared to green fluorescence protein-treated controls (1012 vg per animal, n = 10 per group) with PHP.B vectors. Brain expression of the isoform 1 transgene was more abundant in hindbrain than forebrain and midbrain. Transgene brain expression was sporadic at the cellular level and most prominent in hippocampal neurons and cerebellar Purkinje cells. Correction of postsynaptic density protein 95 cerebellar misexpression, a major fine cerebellar structural abnormality in Cdkl5 knockout mice, was found in regions of high transgene expression within the cerebellum. AAV vector serotype DJ efficiently transduced CDKL5-mutant human induced pluripotent stem cell-derived neural progenitors, which were subsequently differentiated into mature neurons. When treating CDKL5-mutant neurons, isoform 1 expression led to an increased density of synaptic puncta, while isoform 2 ameliorated the calcium signalling defect compared to green fluorescence protein control, implying distinct functions of these isoforms in neurons. This study provides the first evidence that gene therapy mediated by AAV vectors can be used for treating CDKL5 disorder.


Assuntos
Terapia Genética , Isoformas de Proteínas/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Adenoviridae , Animais , Encéfalo/metabolismo , Cálcio/metabolismo , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/biossíntese , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Isoformas de Proteínas/genética , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Sinapses/metabolismo , Transfecção
15.
Int J Med Sci ; 18(14): 3318-3325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400901

RESUMO

Purpose: Hydrogen (H2) is an antioxidant with anti-inflammatory and apoptosis functions.This study aimed to estimate the effects of H2 on acute myocardial infarction (AMI) in rats and its association with the inhibition of oxidative stress and cardiomyocyte pyroptosis. Methods: Sixty-four rats were randomly divided into three groups (Sham, AMI, and H2). The left anterior descending coronary artery (LAD) of rats in the AMI and H2 groups was ligated, while rats in the Sham group were threaded without ligation. In addition, 2% H2 was administered by inhalation for 24 h after ligation in the H2 group. Transthoracic echocardiography was performed after H2 inhalation, followed by collection of the serum and cardiac tissue of all rats. Results: H2 inhalation ameliorated the cardiac dysfunction, infarct size and inflammatory cell infiltration caused by AMI. Meanwhile, H2 inhalation reduced the concentration of serum Troponin I (TnI), brain natriuretic peptide (BNP), reactive oxygen species (ROS), cardiac malondialdehyde (MDA), and 8-OHdG. In addition, H2 inhalation inhibited cardiac inflammation and pyroptosis relative proteins expression. Conclusion: H2 effectively promoted heart functions in AMI rats by regulating oxidative stress and pyroptosis.


Assuntos
Antioxidantes/administração & dosagem , Hidrogênio/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Administração por Inalação , Animais , Modelos Animais de Doenças , Ecocardiografia , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Masculino , Infarto do Miocárdio/complicações , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/diagnóstico , Traumatismo por Reperfusão Miocárdica/imunologia , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Piroptose/efeitos dos fármacos , Piroptose/imunologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Nano Lett ; 20(5): 3747-3753, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32242668

RESUMO

A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a time scale of 0.3 ps. Electron decay is mainly via a defect trapping process on a time scale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under an ultrahigh vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.

17.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206257

RESUMO

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Inata , Miócitos Cardíacos/metabolismo , Receptores Toll-Like/genética , Fatores de Transcrição/metabolismo , Fatores Etários , Animais , Citocinas/metabolismo , Regulação da Expressão Gênica , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
18.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235573

RESUMO

Drinking water containing a high amount of ammonium-nitrogen (NH4+-N) is not effectively removed by conventional treatment processes and can cause eutrophication. In this research, a composite adsorbent based on chitosan crosslink with zeolite molecular sieve (CTS-ZMS) was prepared for NH4+-N removal through dynamic adsorption filter experiments. Effect of bed depth (30, 50 and 70 cm), flow rate (32, 49 and 65 mL/min), initial pH value (4.5, 6.5 and 8.5) and influent NH4+-N concentration (3, 5 and 7 mg/L) was examined by using a filter column packed with CTS-ZMS particles. The Thomas model was applied to study the breakthrough curves and adsorption capacity. The optimal process parameters of the aforementioned factors were obtained at bed depth of 70 cm, flow rate of 32 mL/min, pH of 6.5 and initial NH4+-N concentration of 7 mg/L. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier Transform Infrared Spectroscopy (FTIR) were investigated to analyze the structure and morphology of the CTS-ZMS adsorbents before and after 3 months running. The EDS and FTIR results showed Na+ and the active functional groups of -OH, -NH2 and -COO- on CTS-ZMS adsorbent particles reacted with ammonium nitrogen. The results of this study supported the use of CTS-ZMS to improve drinking water filtration processes by increasing ammonium nitrogen reductions.


Assuntos
Compostos de Amônio/isolamento & purificação , Quitosana/química , Filtração/métodos , Nitrogênio/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Zeolitas/química , Adsorção , Água Potável/análise , Purificação da Água/métodos
19.
Nano Lett ; 18(8): 5001-5006, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932677

RESUMO

Second-order nonlinear optical interactions, including second-harmonic generation (SHG) and sum-frequency generation (SFG), can reveal a wealth of information about chemical, electronic, and vibrational dynamics at the nanoscale. Here, we demonstrate a powerful and flexible new approach, called phase-modulated degenerate parametric amplification (DPA). The technique, which allows for facile retrieval of both the amplitude and phase of the second-order nonlinear optical response, has many advantages over conventional or heterodyne-detected SHG, including the flexibility to detect the signal at either the second harmonic or fundamental field wavelength. We demonstrate the capabilities of this approach by imaging multigrain flakes of single-layer MoS2. We identify the absolute crystal orientation of each MoS2 domain and resolve grain boundaries with high signal contrast and sub-diffraction-limited spatial resolution. This robust all-optical method can be used to characterize structure and dynamics in organic and inorganic systems, including biological tissue, soft materials, and metal and semiconductor nanostructures, and is particularly well-suited for imaging in media that are absorptive or highly scattering to visible and ultraviolet light.

20.
Cell Physiol Biochem ; 51(2): 778-792, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30463056

RESUMO

BACKGROUND/AIMS: Selenium (Se) deficiency can lead to several cardiac diseases, including Keshan disease in humans, mulberry heart disease in pigs and cardiac injury in chickens. MicroRNAs have been a research focus in recent years and have been shown to participate in a new avenue of cell death-autophagy, which can play a significant role in several types of heart disease. METHODS: MicroRNAome analysis showed that the expression of miR-2954 was increased in the myocardium of selenium-deficient chickens, and PI3K was predicted to be the target gene. The target relationship between miR-2954 and PI3K was verified with a double fluorescence enzyme assay and RNA Protein Interaction Prediction and molecular docking software. qRT-PCR and western blotting were used to detect the expression of PI3K and related pathway components in selenium-deficient chickens and miR-2954 knockout/overexpression cardiomyocytes. RESULTS: In this study, we observed that miR-2954 overexpression led to inhibition of PI3K pathway in vivo and in vitroled to inhibition of the PI3K pathway in vivo and in vitro. CONCLUSION: The expression of miR-2954 was increased in selenium-deficient myocardium, whereas overexpression of miR-2954 led to autophagy and apoptosis of myocardial cells during cardiac injury through regulation of the PI3K pathway; whether this phenomenon is a self-protection mechanism of the organism or damage caused by miR-2954 requires further study. Our findings provides new insight apoptosis in cardiomyocytes; additionally, we aim to provide a new direction for the diagnosis and targeted treatment of myocardial diseases.


Assuntos
Apoptose , Autofagia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Selênio/deficiência , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Autofagossomos/metabolismo , Autofagossomos/patologia , Sítios de Ligação , Caspase 3/genética , Caspase 3/metabolismo , Galinhas , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Simulação de Acoplamento Molecular , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Conformação de Ácido Nucleico , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa