Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Nephrol ; 2013: 954956, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401772

RESUMO

Patients on hemodialysis (HD) have a high burden of chronic inflammation induced associated with multiple comorbidities including poor nutritional status. Endotoxin (ET) is a Gram-negative bacterial cell wall component and a potent stimulus for innate immune system activation leading to the transcription of proinflammatory cytokines (e.g., IL-1, IL-6, and TNFα) that adversely affect protein metabolism and nutrition. Several cross-sectional observational studies have found that elevated serum ET concentrations in hemodialysis patients are associated with lower serum albumin, higher proinflammatory cytokine, and C-reactive protein concentrations. Possible sources of ET in the systemic circulation are bacterial translocation from the gastrointestinal tract and iron supplementation, potentially leading to intestinal bacterial overgrowth. Sevelamer is a nonabsorbable hydrogel approved for use as a phosphate binder in HD patients. Reductions in serum ET concentrations in hemodialysis patients have been observed with sevelamer therapy in observational studies and the few published interventional studies. Reduction of ET concentrations was associated with concomitant reductions in TNFα, IL-6, and CRP and improvement in serum albumin in the majority of these small studies. Additional studies are needed to evaluate the potential effects of sevelamer treatment on nutritional status in chronic kidney disease (CKD) patients with elevated ET.

2.
J Blood Med ; 3: 77-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973119

RESUMO

Intravenous iron therapy is pivotal in the treatment of anemia of chronic kidney disease to optimize the response of hemoglobin to erythropoiesis-stimulating agents. Intravenous iron use in patients with chronic kidney disease is on the rise. Recent clinical trial data prompting safety concerns regarding the use of erythropoiesis-stimulating agents has stimulated new US Food and Drug Administration label changes and restrictions for these agents, and has encouraged more aggressive use of intravenous iron. The currently available intravenous iron products differ with regard to the stability of the iron-carbohydrate complex and potential to induce hypersensitivity reactions. Ferumoxytol is a newer large molecular weight intravenous iron formulation that is a colloidal iron oxide nanoparticle suspension coated with polyglucose sorbitol carboxymethyl ether. Ferumoxytol has robust iron-carbohydrate complex stability with minimal dissociation or appearance of free iron in the serum, allowing the drug to be given in relatively large doses with a rapid rate of administration. Clinical trials have demonstrated the superior efficacy of ferumoxytol versus oral iron with minimal adverse effects. However, recent postmarketing data have demonstrated a risk of hypersensitivity that has prompted new changes to the product information mandated by the Food and Drug Administration. Additionally, the long-term safety of this agent has not been evaluated, and its place in the treatment of anemia of chronic kidney disease has not been fully elucidated.

3.
Ophthalmol Eye Dis ; 2: 75-83, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-23861616

RESUMO

Age- related Macular Degeneration (AMD) is the leading cause of severe visual impairment in people 65 years and older in industrialized nations. Exudative, or "wet", AMD is a late form of AMD (as distinguished from atrophic, so-called dry, AMD) and is responsible for over 60% of all cases of blindness due to AMD. It is widely accepted that vascular endothelial growth factor (VEGF) is a key component in the pathogenesis of choroidal neo-vascularization (CNV), which is a precursor to wet AMD. The current gold-standard for treating wet AMD is the monoclonal antibody fragment ranibizumab (trade name Lucentis), which targets VEGF. Other agents used to treat wet AMD include pegaptanib (Macugen), bevacizumab (Avastin; off-label use), and several other experimental agents. The advent of small interfering RNA (siRNA) has presented a whole new approach to inhibiting VEGF. This article reviews the status of a novel siRNA-based therapeutic, bevasiranib, for the treatment of wet AMD. Bevasiranib is believed to work by down regulating VEGF production in the retina. Studies in human cell-lines and animal models have shown that VEGF siRNAs are effective in inhibiting VEGF production. Although there is a lack of sufficient published data on human studies supporting the use of bevasiranib for wet AMD, available data indicates that due to its unique mechanism of action, bevasiranib might hold some promise as a primary or adjunct treatment for wet AMD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa