Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Hum Mutat ; 39(8): 1081-1091, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29726087

RESUMO

Asthma and rhinitis are two of the main clinical manifestations of allergy, in which increased reactive oxygen or electrophilic species can play a pathogenic role. Aldose reductase (AKR1B1) is involved in aldehyde detoxification and redox balance. Recent evidence from animal models points to a role of AKR1B1 in asthma and rhinitis, but its involvement in human allergy has not been addressed. Here, the putative association of allergic rhinitis and asthma with AKR1B1 variants has been explored by analysis of single-strand variants on the AKR1B1 gene sequence in 526 healthy subjects and 515 patients with allergic rhinitis, 366 of whom also had asthma. We found that the rs2229542 variant, introducing the p.Lys90Glu mutation, was significantly more frequent in allergic patients than in healthy subjects. Additionally, in cells transfected with expression vectors carrying the wild-type or the p.Lys90Glu variant of AKR1B1, the mutant consistently attained lower protein levels than the wild-type and showed a compromised thermal stability. Taken together, our results show that the rs2229542 variant associates with asthma and rhinitis, and hampers AKR1B1 protein levels and stability. This unveils a connection between the genetic variability of aldose reductase and allergic processes.


Assuntos
Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Asma/genética , Asma/metabolismo , Rinite Alérgica/genética , Rinite Alérgica/metabolismo , Genótipo , Humanos , Células MCF-7 , Mutação/genética , Estabilidade Proteica
2.
Pharmacogenet Genomics ; 25(9): 462-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26111152

RESUMO

Metamizole is a NSAID that has been banned in several countries because of its toxicity. It is often involved in selective hypersensitivity reactions and most hypersensitivity patients develop anaphylaxis. Metamizole is rapidly metabolized, and metabolic profiles are related to genetic factors. We analyzed whether genetic determinants of metamizole metabolism influence the risk of developing hypersensitivity in 265 patients diagnosed with hypersensitivity to metamizole and 362 healthy individuals who tolerated metamizole. Slow acetylation is associated with an increased risk of developing selective hypersensitivity to metamizole [odds ratio for slow alleles=2.17 (95% confidence interval=1.44-3.27); P=0.00016], and particularly anaphylaxis [odds ratio=4.77 (95% confidence interval=2.28-9.98); P=0.000006], with a significant gene-dose effect. The association was not identified in patients with cross-hypersensitivity. Cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) genotypes did not influence risk association. Our findings raise the hypothesis of genetically determined metabolic variability as a risk factor for developing anaphylaxis with metamizole.


Assuntos
Anafilaxia/induzido quimicamente , Anafilaxia/genética , Anti-Inflamatórios não Esteroides/farmacologia , Dipirona/farmacologia , Predisposição Genética para Doença/genética , Acetilação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios não Esteroides/efeitos adversos , Citocromo P-450 CYP2C19/genética , Dipirona/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem
6.
Br J Pharmacol ; 178(5): 1218-1233, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33450044

RESUMO

BACKGROUND AND PURPOSE: Cross-reactive hypersensitivity to nonsteroidal anti-inflammatory drugs (NSAIDs) is a relatively common adverse drug event caused by two or more chemically unrelated drugs and that is attributed to inhibition of the COX activity, particularly COX-1. Several studies investigated variations in the genes coding for COX enzymes as potential risk factors. However, these studies only interrogated a few single nucleotide variations (SNVs), leaving untested most of the gene sequence. EXPERIMENTAL APPROACH: In this study, we analysed the whole sequence of the prostaglandin-endoperoxide synthase genes, PTGS1 and PTGS2, including all exons, exon-intron boundaries and both the 5' and 3' flanking regions in patients with cross-reactive hypersensitivity to NSAIDs and healthy controls. After sequencing analysis in 100 case-control pairs, we replicated the findings in 540 case-control pairs. Also, we analysed copy number variations for both PTGS genes. KEY RESULTS: The most salient finding was the presence of two PTGS1 single nucleotide variations, which are significantly more frequent in patients than in control subjects. Patients carrying these single nucleotide variations displayed a significantly and markedly lower COX-1 activity as compared to non-carriers for both heterozygous and homozygous patients. CONCLUSION AND IMPLICATIONS: Although the risk single nucleotide variations are present in a small proportion of patients, the strong association observed and the functional effect of these single nucleotide variations raise the hypothesis of genetic susceptibility to develop cross-reactive NSAID hypersensitivity in individuals with an impairment in COX-1 enzyme activity.


Assuntos
Hipersensibilidade a Drogas , Predisposição Genética para Doença , Anti-Inflamatórios não Esteroides/efeitos adversos , Ciclo-Oxigenase 2/genética , Variações do Número de Cópias de DNA , Hipersensibilidade a Drogas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
7.
Front Pharmacol ; 12: 648262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621165

RESUMO

Cross-hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs) is a relatively common, non-allergic, adverse drug event triggered by two or more chemically unrelated NSAIDs. Current evidence point to COX-1 inhibition as one of the main factors in its etiopathogenesis. Evidence also suggests that the risk is dose-dependent. Therefore it could be speculated that individuals with impaired NSAID biodisposition might be at increased risk of developing cross-hypersensitivity to NSAIDs. We analyzed common functional gene variants for CYP2C8, CYP2C9, and CYP2C19 in a large cohort composed of 499 patients with cross-hypersensitivity to NSAIDs and 624 healthy individuals who tolerated NSAIDs. Patients were analyzed as a whole group and subdivided in three groups according to the main enzymes involved in the metabolism of the culprit drugs as follows: CYP2C9, aceclofenac, indomethacin, naproxen, piroxicam, meloxicam, lornoxicam, and celecoxib; CYP2C8 plus CYP2C9, ibuprofen and diclofenac; CYP2C19 plus CYP2C9, metamizole. Genotype calls ranged from 94 to 99%. No statistically significant differences between patients and controls were identified in this study, either for allele frequencies, diplotypes, or inferred phenotypes. After patient stratification according to the enzymes involved in the metabolism of the culprit drugs, or according to the clinical presentation of the hypersensitivity reaction, we identified weak significant associations of a lower frequency (as compared to that of control subjects) of CYP2C8*3/*3 genotypes in patients receiving NSAIDs that are predominantly CYP2C9 substrates, and in patients with NSAIDs-exacerbated cutaneous disease. However, these associations lost significance after False Discovery Rate correction for multiple comparisons. Taking together these findings and the statistical power of this cohort, we conclude that there is no evidence of a major implication of the major functional CYP2C polymorphisms analyzed in this study and the risk of developing cross-hypersensitivity to NSAIDs. This argues against the hypothesis of a dose-dependent COX-1 inhibition as the main underlying mechanism for this adverse drug event and suggests that pre-emptive genotyping aiming at drug selection should have a low practical utility for cross-hypersensitivity to NSAIDs.

8.
Front Pharmacol ; 11: 570721, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041811

RESUMO

Individual susceptibility and clinical outcome of Covid-19 are variable and mortality is also very variable across countries, being particularly high in Spain. Comorbidities might increase the risk for less favourable outcomes, but it has been reported that patients with antecedents of asthma or allergic diseases were under-represented among hospitalized Covid-19 patients. Aiming to compare the clinical evolution of patients with antecedents of asthma or allergic diseases and patients without these antecedents, we analyzed a series of 113 consecutive patients with Covid-19 in a regional hospital in Spain. We collected and analyzed the putative effect of the 16 most common co-morbidities, previous treatment with 33 drug classes, symptoms, radiological, and laboratory findings at admission and drug therapy after admission. Predictors of long hospital stays were older age (P = 0.002), low oxygen saturation (P = 0.001) and bilateral radiological findings at admission (P = 0.023). Predictors of Intensive Care Unit (ICU) admission were the previous use of calcium-channel blockers (P = 0.005), proton pump inhibitors (P = 0.017), low oxygen saturation (P = 0.002), high leukocyte count (P = 0.011), and high D-dimer values (P = 0.005). Predictors of mortality were older age (P = 0.001), antecedents of cerebrovascular disorders (P = 0.034), previous use of oral anticoagulants (P = 0.009) or selective serotonin reuptake inhibitors (P = 0.003), and increased levels of interleukin-6 (P = 0.001). Patients with antecedents of allergic diseases were about ten years younger (P = 0.003) and had fewer comorbidities (P = 0.026) than the rest of the patients. In conclusion, antecedents of allergic diseases might influence hospitalization risk in relatively young patients.

9.
Front Pharmacol ; 10: 520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178722

RESUMO

Asthma is a frequent disease, mainly characterized by airway inflammation, in which drug therapy is crucial in its management. The potential of pharmacogenomics testing in asthma therapy has been, to date, little explored. In this review, we discuss pharmacogenetic factors affecting asthma treatment, both related to drugs used as controller medications for regular maintenance, such as inhaled corticosteroids, anti-leukotriene agents, long-acting beta-agonists, and the new biologic agents used to treat severe persistent asthma. In addition, we discuss current pharmacogenomics knowledge for rescue medications provided to all patients for as-needed relief, such as short-acting beta-agonists. Evidence for genetic variations as a factor related to drugs response has been provided for the following genes and groups of drugs: Inhaled corticosteroids: FCER2; anti-leukotriene agents: ABCC1, and LTC4S; beta-agonists: ADRB2. However, the following genes require further studies confirming or rejecting association with the response to asthma therapy: ADCY9, ALOX5, ARG1, ARG2, CRHR1, CRHR2, CYP3A4, CYP3A5, CYSLTR1, CYSLTR2, GLCCI1, IL4RA, LTA4H, ORMDL3, SLCO2B1, SPATS2L, STIP1, T, TBX21, THRA, THRB, and VEGFA. Although only a minority of these genes are, at present, listed as associated with drugs used in asthma therapy, in the Clinical Pharmacogenomics Implementation Consortium gene-drug pair list, this review reveals that sufficient evidence to start testing the potential of clinical pharmacogenomics in asthma therapy already exists. This evidence supports the inclusion in pilot pharmacogenetics tests of at least four genes. Hopefully these tests, if proven useful, will increase the efficiency and the safety of asthma therapy.

10.
Front Genet ; 10: 582, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293618

RESUMO

The prevalence of allergic diseases and drug hypersensitivity reactions (DHRs) during recent years is increasing. Both, allergic diseases and DHRs seem to be related to an interplay between environmental factors and genetic susceptibility. In recent years, a large effort in the elucidation of the genetic mechanisms involved in these disorders has been made, mostly based on case-control studies, and typically focusing on isolated SNPs. These studies provide a limited amount of information, which now can be greatly expanded by the complete coverage that Next Generation Sequencing techniques offer. In this study, we analyzed the promoters of sixteen genes related to the Vitamin D pathway and the high-affinity IgE receptor, including FCER1A, MS4A2, FCER1G, VDR, GC, CYP2R1, CYP27A1, CYP27B1, CYP24A1, RXRA, RXRB, RXRG, IL4, IL4R, IL13, and IL13RA1. The study group was composed of patients with allergic rhinitis plus asthma (AR+A), patients with hypersensitivity to beta-lactams (BLs), to NSAIDs including selective hypersensitivity (SH) and cross-reactivity (CR), and healthy controls without antecedents of atopy or adverse drug reactions. We identified 148 gene variations, 43 of which were novel. Multinomial analyses revealed that three SNPs corresponding to the genes FCER1G (rs36233990 and rs2070901), and GC (rs3733359), displayed significant associations and, therefore, were selected for a combined dataset study in a cohort of 2,476 individuals. The strongest association was found with the promoter FCER1G rs36233990 SNP that alters a transcription factor binding site. This SNP was over-represented among AR+A patients and among patients with IgE-mediated diseases, as compared with control individuals or with the rest of patients in this study. Classification models based on the above-mentioned SNPs were able to predict correct clinical group allocations in patients with DHRs, and patients with IgE-mediated DHRs. Our findings reveal gene promoter SNPs that are significant predictors of drug hypersensitivity, thus reinforcing the hypothesis of a genetic predisposition for these diseases.

12.
Sci Rep ; 6: 19724, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26792385

RESUMO

Allergic rhinitis is associated with elevated serum IgE levels. IgE response is mediated by the high-affinity IgE receptor (FcεRI), which is polymorphic. Studies analyzing the association between allergic rhinitis and FcεRI variants have been conducted with controversial results. The objective of this study is to analyze, in 1,041 individuals, the putative clinical association of allergic rhinitis with common polymorphisms in FcεRI subunits genes. These SNPs included FECR1A rs2494262, rs2427837 and rs2251746; FECR1B rs1441586, rs569108 and rs512555; FCER1G rs11587213, rs2070901 and rs11421. Statistically significant differences were observed for the FCER1B rs569108 and rs512555 polymorphisms frequencies when comparing patients with allergic rhinitis without asthma and controls. The OR (95% CI) value for the 237Gly allele (rs569108) is equal to 0.26 (0.08-0.86, P = 0.017) and for the G allele (rs512555) it is equal to 0.27 (0.08-0.88, P = 0.020). These two SNPs are linked (D' = 1.0, LOD = 56.05). Also observed was a statistically significant trend towards lower IgE values among allergic rhinitis patients with variant alleles for both SNPs. In conclusion, in patients with allergic rhinitis without asthma, the FCER1B rs569108 and rs512555 polymorphisms are associated with increased risk of developing allergic rhinitis and with lower IgE levels.


Assuntos
Imunoglobulina E/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de IgE/genética , Rinite Alérgica/genética , Rinite Alérgica/imunologia , Alelos , Asma/genética , Asma/imunologia , Estudos de Casos e Controles , Frequência do Gene , Genótipo , Humanos , Imunoglobulina E/sangue
13.
Front Pharmacol ; 7: 353, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746735

RESUMO

The high-affinity IgE receptor (Fcε RI) is a heterotetramer of three subunits: Fcε RIα, Fcε RIß, and Fcε RIγ (αßγ2) encoded by three genes designated as FCER1A, FCER1B (MS4A2), and FCER1G, respectively. Recent evidence points to FCERI gene variability as a relevant factor in the risk of developing allergic diseases. Because Fcε RI plays a key role in the events downstream of the triggering factors in immunological response, we hypothesized that FCERI gene variants might be related with the risk of, or with the clinical response to, selective (IgE mediated) non-steroidal anti-inflammatory (NSAID) hypersensitivity. From a cohort of 314 patients suffering from selective hypersensitivity to metamizole, ibuprofen, diclofenac, paracetamol, acetylsalicylic acid (ASA), propifenazone, naproxen, ketoprofen, dexketoprofen, etofenamate, aceclofenac, etoricoxib, dexibuprofen, indomethacin, oxyphenylbutazone, or piroxicam, and 585 unrelated healthy controls that tolerated these NSAIDs, we analyzed the putative effects of the FCERI SNPs FCER1A rs2494262, rs2427837, and rs2251746; FCER1B rs1441586, rs569108, and rs512555; FCER1G rs11587213, rs2070901, and rs11421. Furthermore, in order to identify additional genetic markers which might be associated with the risk of developing selective NSAID hypersensitivity, or which may modify the putative association of FCERI gene variations with risk, we analyzed polymorphisms known to affect histamine synthesis or metabolism, such as rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742, and rs1049793 in the HDC, HNMT, and DAO genes. No major genetic associations with risk or with clinical presentation, and no gene-gene interactions, or gene-phenotype interactions (including age, gender, IgE concentration, antecedents of atopy, culprit drug, or clinical presentation) were identified in patients. However, logistic regression analyses indicated that the presence of antecedents of atopy and the DAO SNP rs2052129 (GG) were strongly related (P < 0.001 and P = 0.005, respectively) with selective hypersensitivity to ibuprofen. With regard to patients with selective hypersensitivity to ASA, men were more prone to develop such a reaction than women (P = 0.011), and the detrimental DAO SNP rs10156191 in homozygosity increased the risk of developing such hypersensitivity (P = 0.039).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa