Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Can J Microbiol ; 60(10): 639-48, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25231840

RESUMO

Rhizobacteria promote and have beneficial effects on plant growth, making them useful to agriculture. Nevertheless, the rhizosphere of the chickpea plant has not been extensively examined. The aim of the present study was to select indole-3-acetic acid (IAA) producing rhizobacteria from the rhizosphere of chickpea plants for their potential use as biofertilizers. After obtaining a collection of 864 bacterial isolates, we performed a screen using the Salkowski reaction for the presence of auxin compounds (such as IAA) in bacterial Luria-Bertani supernatant (BLBS). Our results demonstrate that the Salkowski reaction has a greater specificity for detecting IAA than other tested auxins. Ten bacterial isolates displaying a wide range of auxin accumulation were selected, producing IAA levels of 5 to 90 µmol/L (according to the Salkowski reaction). Bacterial isolates were identified on the basis of 16S rDNA partial sequences: 9 isolates belonged to Enterobacter, and 1 isolate was classified as Serratia. The effect of BLBS on root morphology was evaluated in Arabidopsis thaliana. IAA production by rhizobacteria was confirmed by means of a DR5::GFP construct that is responsive to IAA, and also by HPLC-GC/MS. Finally, we observed that IAA secreted by rhizobacteria (i) modified the root architecture of A. thaliana, (ii) caused an increase in chickpea root biomass, and (iii) activated the green fluorescent protein (GFP) reporter gene driven by the DR5 promoter. These findings provide evidence that these novel bacterial isolates may be considered as putative plant-growth-promoting rhizobacteria modifying root architecture and increasing root biomass.


Assuntos
Cicer/microbiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/fisiologia , Raízes de Plantas/microbiologia , Arabidopsis/microbiologia , Biomassa , Cicer/crescimento & desenvolvimento , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Ácidos Indolacéticos/análise , Ácidos Indolacéticos/metabolismo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Rizosfera
2.
Front Plant Sci ; 14: 1195794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441182

RESUMO

Introduction: The fungal pathogen Fusarium verticillioides (Sacc.) Nirenberg (Fv) causes considerable agricultural and economic losses and is harmful to animal and human health. Fv can infect maize throughout its long agricultural cycle, and root infection drastically affects maize growth and yield. Methods: The root cell wall is the first physical and defensive barrier against soilborne pathogens such as Fv. This study compares two contrasting genotypes of maize (Zea mays L.) roots that are resistant (RES) or susceptible (SUS) to Fv infection by using transcriptomics, fluorescence, scanning electron microscopy analyses, and ddPCR. Results: Seeds were infected with a highly virulent local Fv isolate. Although Fv infected both the RES and SUS genotypes, infection occurred faster in SUS, notably showing a difference of three to four days. In addition, root infections in RES were less severe in comparison to SUS infections. Comparative transcriptomics (rate +Fv/control) were performed seven days after inoculation (DAI). The analysis of differentially expressed genes (DEGs) in each rate revealed 733 and 559 unique transcripts that were significantly (P ≤0.05) up and downregulated in RES (+Fv/C) and SUS (+Fv/C), respectively. KEGG pathway enrichment analysis identified coumarin and furanocoumarin biosynthesis, phenylpropanoid biosynthesis, and plant-pathogen interaction pathways as being highly enriched with specific genes involved in cell wall modifications in the RES genotype, whereas the SUS genotype mainly displayed a repressed plant-pathogen interaction pathway and did not show any enriched cell wall genes. In particular, cell wall-related gene expression showed a higher level in RES than in SUS under Fv infection. Analysis of DEG abundance made it possible to identify transcripts involved in response to abiotic and biotic stresses, biosynthetic and catabolic processes, pectin biosynthesis, phenylpropanoid metabolism, and cell wall biosynthesis and organization. Root histological analysis in RES showed an increase in lignified cells in the sclerenchymatous hypodermis zone during Fv infection. Discussion: These differences in the cell wall and lignification could be related to an enhanced degradation of the root hairs and the epidermis cell wall in SUS, as was visualized by SEM. These findings reveal that components of the root cell wall are important against Fv infection and possibly other soilborne phytopathogens.

3.
Microorganisms ; 8(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32586066

RESUMO

Mycotoxins from the Fusarium genus are widely known to cause economic losses in crops, as well as high mortalities rates among immunocompromised humans. However, to date, no correlation has been established for the ability of Fusarium to cause cross-kingdom infection between plants and humans. The present investigation aims to fill this gap in the literature by examining cross-kingdom infection caused by Furasium strains isolated from non-immunocompromised or non-immunosuppressed humans, which were subsequently reinfected in plants and on human tissue. The findings document for the first time cross-kingdom infective events in Fusarium species, thus enhancing our existing knowledge of how mycopathogens continue to thrive in different hosts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa