RESUMO
BACKGROUND: Removal of trace organic chemicals (TOrCs) in aquatic environments has been intensively studied. Some members of natural microbial communities play a vital role in transforming chemical contaminants, however, complex microbial interactions impede us from gaining adequate understanding of TOrC biotransformation mechanisms. To simplify, in this study, we propose a strategy of establishing reduced-richness model communities capable of removing diverse TOrCs via pre-adaptation and dilution-to-extinction. RESULTS: Microbial communities were adapted from tap water, soil, sand, sediment deep and sediment surface to changing concentrations of 27 TOrCs mixture. After adaptation, the communities were further diluted to reduce diversity into 96 deep well plates for high-throughput cultivation. After characterizing microbial structure and TOrC removal performance, thirty taxonomically non-redundant model communities with different removal abilities were obtained. The pre-adaptation process was found to reduce the microbial richness but to increase the evenness and phylogenetic diversity of resulting model communities. Moreover, phylogenetic diversity showed a positive effect on the number of TOrCs that can be transformed simultaneously. Pre-adaptation also improved the overall TOrC removal rates, which was found to be positively correlated with the growth rates of model communities. CONCLUSIONS: This is the first study that investigated a wide range of TOrC biotransformation based on different model communities derived from varying natural microbial systems. This study provides a standardized workflow of establishing model communities for different metabolic purposes with changeable inoculum and substrates. The obtained model communities can be further used to find the driving agents of TOrC biotransformation at the enzyme/gene level.
Assuntos
Poluentes Químicos da Água , Biodegradação Ambiental , Filogenia , Poluentes Químicos da Água/química , Biotransformação , Compostos Orgânicos/metabolismoRESUMO
Gut microbes play important roles for their hosts. Previous studies suggest that host-microbial systems can form long-term associations over evolutionary time and the dynamic changes of the intestinal system may represent major driving forces and contribute to insect dietary diversification and speciation. Our study system includes a set of six closely related leaf beetle species (Galerucella spp.) and our study aims to separate the roles of host phylogeny and ecology in determining the gut microbial community and to identify eventual relationship between host insects and gut bacteria. We collected adult beetles from their respective host plants and quantified their microbial community using 16S rRNA sequencing. The results showed that the gut bacteria community composition was structured by host beetle phylogeny, where more or less host-specific gut bacteria interact with the different Galerucella species. For example, the endosymbiotic bacteria Wolbachia was found almost exclusively in G. nymphaea and G. sagittariae. Diversity indicators also suggested that α- and ß-diversities of gut bacteria communities varied among host beetle species. Overall, our results suggest a phylogenetically controlled co-occurrence pattern between the six closely related Galerucella beetles and their gut bacteria, indicating the potential of co-evolutionary processes occurring between hosts and their gut bacterial communities.
Assuntos
Besouros , Microbioma Gastrointestinal , Animais , Besouros/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Insetos , Bactérias/genéticaRESUMO
Freshwater lakes harbor complex microbial communities, but these ecosystems are often dominated by acI Actinobacteria Members of this cosmopolitan lineage are proposed to bolster heterotrophic growth using phototrophy because their genomes encode actino-opsins (actR). This model has been difficult to validate experimentally because acI Actinobacteria are not consistently culturable. Based primarily on genomes from single cells and metagenomes, we provide a detailed biosynthetic route for members of acI clades A and B to synthesize retinal and its carotenoid precursors. Consequently, acI cells should be able to natively assemble light-driven actinorhodopsins (holo-ActR) to pump protons, unlike many bacteria that encode opsins but may need to exogenously obtain retinal because they lack retinal machinery. Moreover, we show that all acI clades contain genes for a secondary branch of the carotenoid pathway, implying synthesis of a complex carotenoid. Transcription analysis of acI Actinobacteria in a eutrophic lake shows that all retinal and carotenoid pathway operons are transcribed and that actR is among the most highly transcribed of all acI genes. Furthermore, heterologous expression of acI retinal pathway genes showed that lycopene, retinal, and ActR can be made using the genes encoded in these organisms. Model cells producing ActR and the key acI retinal-producing ß-carotene oxygenase formed holo-ActR and acidified solution during illumination. Taken together, our results prove that acI Actinobacteria containing both ActR and acI retinal production machinery have the capacity to natively synthesize a green light-dependent outward proton-pumping rhodopsin.IMPORTANCE Microbes play critical roles in determining the quality of freshwater ecosystems, which are vital to human civilization. Because acI Actinobacteria are ubiquitous and abundant in freshwater lakes, clarifying their ecophysiology is a major step in determining the contributions that they make to nitrogen and carbon cycling. Without accurate knowledge of these cycles, freshwater systems cannot be incorporated into climate change models, ecosystem imbalances cannot be predicted, and policy for service disruption cannot be planned. Our work fills major gaps in microbial light utilization, secondary metabolite production, and energy cycling in freshwater habitats.
Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Genes Bacterianos/genética , Lagos/microbiologia , Retinaldeído/biossíntese , Retinaldeído/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carotenoides/genética , Carotenoides/metabolismo , Ecossistema , Redes e Vias Metabólicas/genética , Modelos Moleculares , Opsinas/genética , Opsinas/metabolismo , Processos Fototróficos , Bombas de Próton , Rodopsina , Análise de Sequência de ProteínaRESUMO
Microorganisms are usually studied either in highly complex natural communities or in isolation as monoclonal model populations that we manage to grow in the laboratory. Here, we uncover the biology of some of the most common and yet-uncultured bacteria in freshwater environments using a mixed culture from Lake Grosse Fuchskuhle. From a single shotgun metagenome of a freshwater mixed culture of low complexity, we recovered four high-quality metagenome-assembled genomes (MAGs) for metabolic reconstruction. This analysis revealed the metabolic interconnectedness and niche partitioning of these naturally dominant bacteria. In particular, vitamin- and amino acid biosynthetic pathways were distributed unequally with a member of Crenarchaeota most likely being the sole producer of vitamin B12 in the mixed culture. Using coverage-based partitioning of the genes recovered from a single MAG intrapopulation metabolic complementarity was revealed pointing to 'social' interactions for the common good of populations dominating freshwater plankton. As such, our MAGs highlight the power of mixed cultures to extract naturally occurring 'interactomes' and to overcome our inability to isolate and grow the microbes dominating in nature.
Assuntos
Bactérias/metabolismo , Crenarchaeota/metabolismo , Água Doce/microbiologia , Metaboloma , Metagenoma , Consórcios Microbianos , Bactérias/classificação , Crenarchaeota/genética , Genoma Arqueal , Genoma Bacteriano , Processos Heterotróficos , Lagos/microbiologia , Filogenia , Plâncton/classificação , Plâncton/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina B 12/biossínteseRESUMO
Knowledge on Actinobacteria rhodopsin gene (actR) diversity and spatial distribution is scarce. The Baltic Sea is characterized by strong salinity gradients leading to the coexistence of marine and freshwater bacteria and hence is an ideal study area to elucidate the dispersion and phylogenetic affiliation of actR in dependence on salinity. ActRâ DGGE fingerprints in summer 2008 revealed between 3 and 19 distinct bands within a salinity range of 2.4-27 PSU. Environmental actR clone sequences were obtained from stations distributed along the whole salinity gradient. Overall, 20 different actR sequence groups (operational taxonomic units) were found, with up to 11 different ones per station. Phylogenetically, the actR sequences were predominantly (80%) affiliated with freshwater acI-Actinobacteria whose 16S rRNA gene accounted for 2-33% of total 16S rRNA genes in both the Bothnian Sea and central Baltic Sea. However, at salinities above 14 PSU, acI-16S rRNA gene accounted for less than 1%. In contrast, the diversity of actR remained high. Changes in actR gene diversity were significantly correlated with salinity, oxygen, silica or abundance of Synechococcus sp. Our results demonstrate a wide distribution of freshwater actR along the Baltic Sea salinity gradient indicating that some freshwater Actinobacteria might have adapted to higher salinities.
Assuntos
Actinobacteria/genética , Adaptação Fisiológica/genética , Rodopsinas Microbianas/genética , Salinidade , Actinobacteria/classificação , Eletroforese em Gel de Gradiente Desnaturante , Água Doce/microbiologia , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano , Água do Mar/microbiologiaRESUMO
Ecology and evolution are often viewed as distinct processes, which interact on contemporary time scales in microbiomes. To observe these processes in a natural system, we collected a two-decade, 471-sample freshwater lake time series, creating the longest metagenome dataset to date. Among 2,855 species-representative genomes, diverse species and strains followed cyclical seasonal patterns, and one in five species experienced decadal shifts in strain composition. The most globally abundant freshwater bacterium had constant species-level abundance, but environmental extremes appeared to trigger a shift in strain composition and positive selection of amino acid and nucleic acid metabolism genes. These genes identify organic nitrogen compounds as potential drivers of freshwater responses to global change. Seasonal and long-term strain dynamics could be regarded as ecological processes or equivalently as evolutionary change. Rather than as distinct processes that interact, we propose a conceptualization where ecology and evolution converge along a continuum to better describe change in diverse microbial communities.
RESUMO
PURPOSE: A substantial body of evidence describes the multidimensional relationship between the intersection of physicians' work and personal lives and health care quality and costs, workforce sustainability, and workplace safety culture. However, there is no clear consensus on the terms, definitions, or measures used in physician work-personal intersection (WPI) research. In this scoping review, the authors aimed to describe the terms and definitions used by researchers to describe physician WPI, summarize the measurement tools used, and formulate a conceptual model of WPI that can inform future research. METHOD: The authors searched PubMed, CINAHL, Scopus, and Web of Science for studies that investigated U.S. practicing physicians' WPI and measured WPI as an outcome from January 1990 to March 2022. The authors applied thematic analysis to all WPI terms, definitions, and survey questions or prompts in the included studies to create a conceptual model of physician WPI. RESULTS: Ultimately, 102 studies were included in the final analysis. The most commonly used WPI terms were work-life balance, work-life integration, and work-home or work-life conflict(s). There was no consistency in the definition of any terms across studies. There was heterogeneity in the way WPI was measured, and only 8 (7.8%) studies used a validated measurement tool. The authors identified 6 key driver domains of WPI: work and personal demands; colleague and institutional support and resources; personal identity, roles, health, and values; work schedule and flexibility; partner and family support; and personal and professional strategies. CONCLUSIONS: The authors found significant variability in the terms, definitions, and measures used to study physician WPI. They offer a conceptual model of the WPI construct that can be used to more consistently study physician WPI in the future. Future work should further investigate the validity of this model and generate consensus around WPI terms, definitions, and measures.
Assuntos
Médicos , Humanos , Local de Trabalho , Inquéritos e Questionários , Consenso , Qualidade da Assistência à SaúdeRESUMO
The candidate phyla radiation (CPR) represents a distinct monophyletic clade and constitutes a major portion of the tree of life. Extensive efforts have focused on deciphering the functional diversity of its members, primarily using sequencing-based techniques. However, cultivation success remains scarce, presenting a significant challenge, particularly in CPR-dominated groundwater microbiomes characterized by low biomass. Here, we employ an advanced high-throughput droplet microfluidics technique to enrich CPR taxa from groundwater. Utilizing a low-volume filtration approach, we successfully harvested a microbiome resembling the original groundwater microbial community. We assessed CPR enrichment in droplet and aqueous bulk cultivation for 30 days using a novel CPR-specific primer to rapidly track the CPR fraction through the cultivation attempts. The combination of soil extract and microbial-derived necromass provided the most supportive conditions for CPR enrichment. Employing these supplemented conditions, droplet cultivation proved superior to bulk cultivation, resulting in up to a 13-fold CPR enrichment compared to a 1- to 2-fold increase in bulk cultivation. Amplicon sequencing revealed 10 significantly enriched CPR orders. The highest enrichment in CPRs was observed for some unknown members of the Parcubacteria order, Cand. Jorgensenbacteria, and unclassified UBA9983. Furthermore, we identified co-enriched putative host taxa, which may guide more targeted CPR isolation approaches in subsequent investigations.
RESUMO
Implications of geographic separation and temporal dynamics on the evolution of free-living bacterial species are widely unclear. However, the vast amount of metagenome sequencing data generated during the last decades from various habitats around the world provides an unprecedented opportunity for such investigations. Here, we exploited publicly available and new freshwater metagenomes in combination with the genomes of abundant freshwater bacteria to reveal geographic and temporal population structure. We focused on species that were detected across broad geographic ranges at high enough sequence coverage for meaningful population genomic analyses, associated with the predominant freshwater taxa acI, LD12, Polynucleobacter, and Candidatus Methylopumilus. Despite the broad geographic ranges, each species appeared as a sequence-discrete cluster, in contrast to abundant marine taxa, for which continuous diversity structures were reported on a global scale. Population differentiation increased significantly with spatial distance in all species, but notable dispersal barriers (e.g. oceanic) were not apparent. Yet, the different species showed contrasting rates of geographic divergence and strikingly different intra-population dynamics in time series within individual habitats. The change in an LD12 population over 7 years was minor (FST = 0.04) compared to differentiation between lakes, whereas a Polynucleobacter population displayed strong changes within merely 2 months (FST up to 0.54), similar in scale to differentiation between populations separated by thousands of kilometers. The slowly and steadily evolving LD12 population showed high strain diversity, whereas the dynamic Polynucleobacter population exhibited alternating clonal expansions of mostly two strains only. Based on the contrasting population structures, we propose distinct models of speciation.
Assuntos
Bactérias , Água Doce , Água Doce/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Filogenia , Dinâmica Populacional , Ecossistema , Biodiversidade , Genoma Bacteriano , FilogeografiaRESUMO
Arctic soil microbial communities may shift with increasing temperatures and water availability from climate change. We examined temperature and volumetric liquid water content (VWC) in the upper 80 cm of permafrost-affected soil over 2 years (2018-2019) at the Bayelva monitoring station, Ny Ålesund, Svalbard. We show VWC increases with depth, whereas in situ temperature is more stable vertically, ranging from -5°C to 5 °C seasonally. Prokaryotic metagenome-assembled genomes (MAGs) were obtained at 2-4 cm vertical resolution collected while frozen in April 2018 and at 10 cm vertical resolution collected while thawed in September 2019. The most abundant MAGs were Acidobacteriota, Actinomycetota, and Chloroflexota. Actinomycetota and Chloroflexota increase with depth, while Acidobacteriota classes Thermoanaerobaculia Gp7-AA8, Blastocatellia UBA7656, and Vicinamibacteria Vicinamibacterales are found above 6 cm, below 6 cm, and below 20 cm, respectively. All MAGs have diverse carbon-degrading genes, and Actinomycetota and Chloroflexota have autotrophic genes. Genes encoding ß -glucosidase, N-acetyl-ß-D-glucosaminidase, and xylosidase increase with depth, indicating a greater potential for organic matter degradation with higher VWC. Acidobacteriota dominate the top 6 cm with their classes segregating by depth, whereas Actinomycetota and Chloroflexota dominate below â¼6 cm. This suggests that Acidobacteriota classes adapt to lower VWC at the surface, while Actinomycetota and Chloroflexota persist below 6 cm with higher VWC. This indicates that VWC may be as important as temperature in microbial climate change responses in Arctic mineral soils. Here we describe MAG-based Seqcode type species in the Acidobacteriota, Onstottus arcticum, Onstottus frigus, and Gilichinskyi gelida and in the Actinobacteriota, Mayfieldus profundus.
RESUMO
PURPOSE: This study aimed to identify, evaluate, and rank suitable safety innovations developed during the COVID-19 pandemic in Latin American and Caribbean (LAC) radiation oncology centers. METHODS: We conducted a multimodal participatory engagement collaboration with the Latin-American and Caribbean Society of Medical Oncology. The study consisted of four phases. Innovations were collected from a panel of radiotherapy experts representing a diverse group of 11 countries from LAC (Phase I). Next, a medical scientific team compared the innovations against international standards regarding their potential impact on risk of infection, clinical operation, and continuity of quality cancer care (Phase II). Their findings were supplied to the country representatives who rated the innovations for acceptability in their cancer centers (Phase III), resulting in a final report of the panel's recommendations (Phase IV). RESULTS: A total of 81 innovations were reported by the country representatives and merged by the medical scientific team into 24 innovations that combined similar innovations. The 24 innovations were grouped into six categories including practices aimed at (1) reducing clinic crowding (n = 3), (2) increasing screening and vaccinations for COVID-19 disease (n = 5), (3) implementing social distancing (n = 6), (4) strengthening personal infection equipment and disinfection (n = 6), (5) avoiding delaying or shortening treatment protocols (n = 2), and (6) mixed procedures (n = 2). The medical scientific team found nearly all innovations were supported by international recommendations and rated as safe, efficient, and acceptable. CONCLUSION: By using the lessons learned from the Community-Led Action Research in Oncology: Pandemic-Appropriate Radiotherapy Innovations Evaluated study, a manual of scalable practices in radiation oncology clinics may be developed to guide actions during future large-scale public health crises in low- and middle-income countries of LAC.
Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , América Latina , Região do Caribe/epidemiologia , Radioterapia (Especialidade) , SARS-CoV-2 , Pandemias/prevenção & controle , Neoplasias/radioterapia , Pesquisa Participativa Baseada na Comunidade , OncologiaRESUMO
Microbial communities drive global biogeochemical cycles and shape the health of plants and animals-including humans. Their structure and function are determined by ecological and environmental interactions that govern the assembly, stability and evolution of microbial communities. A widely held view is that antagonistic interactions such as competition predominate in microbial communities and are ecologically more important than synergistic interactions-for example, mutualism or commensalism. Over the past decade, however, a more nuanced picture has emerged, wherein bacteria, archaea and fungi exist within interactive networks in which they exchange essential and non-essential metabolites. These metabolic interactions profoundly impact not only the physiology, ecology and evolution of the strains involved, but are also central to the functioning of many, if not all, microbiomes. Therefore, we advocate for a balanced view of microbiome ecology that encompasses both synergistic and antagonistic interactions as key forces driving the structure and dynamics within microbial communities.
Assuntos
Microbiota , Animais , Humanos , Simbiose , Bactérias/genética , Bactérias/metabolismo , ArchaeaRESUMO
Urban lakes provide multiple benefits to society while influencing life quality. Moreover, lakes and their microbiomes are sentinels of anthropogenic impact and can be used for natural resource management and planning. Here, we release original metagenomic data from several well-characterized and anthropogenically impacted eutrophic lakes in the vicinity of Stockholm (Sweden). Our goal was to collect representative microbial community samples and use shotgun sequencing to provide a broad view on microbial diversity of productive urban lakes. Our dataset has an emphasis on Lake Mälaren as a major drinking water reservoir under anthropogenic impact. This dataset includes short-read sequence data and metagenome assemblies from each of 17 samples collected from eutrophic lakes near the greater Stockholm area. We used genome-resolved metagenomics and obtained 2378 metagenome assembled genomes that de-replicated into 514 species representative genomes. This dataset adds new datapoints to previously sequenced lakes and it includes the first sequenced set of metagenomes from Lake Mälaren. Our dataset serves as a baseline for future monitoring of drinking water reservoirs and urban lakes.
Assuntos
Lagos , Metagenoma , Bactérias/genética , Água Potável , Metagenômica , SuéciaRESUMO
While theories and models have appeared to explain genome size as a result of evolutionary processes, little work has shown that genome sizes carry ecological signatures. Our work delves into the ecological implications of microbial genome size variation in benthic and pelagic habitats across environmental gradients of the brackish Baltic Sea. While depth is significantly associated with genome size in benthic and pelagic brackish metagenomes, salinity is only correlated to genome size in benthic metagenomes. Overall, we confirm that prokaryotic genome sizes in Baltic sediments (3.47 Mbp) are significantly bigger than in the water column (2.96 Mbp). While benthic genomes have a higher number of functions than pelagic genomes, the smallest genomes coded for a higher number of module steps per Mbp for most of the functions irrespective of their environment. Some examples of this functions are amino acid metabolism and central carbohydrate metabolism. However, we observed that nitrogen metabolism was almost absent in pelagic genomes and was mostly present in benthic genomes. Finally, we also show that Bacteria inhabiting Baltic sediments and water column not only differ in taxonomy, but also in their metabolic potential, such as the Wood-Ljungdahl pathway or the presence of different hydrogenases. Our work shows how microbial genome size is linked to abiotic factors in the environment, metabolic potential and taxonomic identity of Bacteria and Archaea within aquatic ecosystems.
RESUMO
BACKGROUND: Microorganisms in the seafloor use a wide range of metabolic processes, which are coupled to the presence of functional genes within their genomes. Aquatic environments are heterogenous and often characterized by natural physiochemical gradients that structure these microbial communities potentially changing the diversity of functional genes and its associated metabolic processes. In this study, we investigated spatial variability and how environmental variables structure the diversity and composition of benthic functional genes and metabolic pathways across various fundamental environmental gradients. We analyzed metagenomic data from sediment samples, measured related abiotic data (e.g., salinity, oxygen and carbon content), covering 59 stations spanning 1,145 km across the Baltic Sea. RESULTS: The composition of genes and microbial communities were mainly structured by salinity plus oxygen, and the carbon to nitrogen (C:N) ratio for specific metabolic pathways related to nutrient transport and carbon metabolism. Multivariate analyses indicated that the compositional change in functional genes was more prominent across environmental gradients compared to changes in microbial taxonomy even at genus level, and indicate functional diversity adaptation to local environments. Oxygen deficient areas (i.e., dead zones) were more different in gene composition when compared to oxic sediments. CONCLUSIONS: This study highlights how benthic functional genes are structured over spatial distances and by environmental gradients and resource availability, and suggests that changes in, e.g., oxygenation, salinity, and carbon plus nitrogen content will influence functional metabolic pathways in benthic habitats. Video Abstract.
Assuntos
Microbiota , Salinidade , Carbono , Microbiota/genética , Nitrogênio , OxigênioRESUMO
Boreal lakes and ponds produce two-thirds of the total natural methane emissions above the latitude of 50° North. These lake emissions are regulated by methanotrophs which can oxidize up to 99% of the methane produced in the sediments and the water column. Despite their importance, the diversity and distribution of the methanotrophs in lakes are still poorly understood. Here, we used shotgun metagenomic data to explore the diversity and distribution of methanotrophs in 40 oxygen-stratified water bodies in boreal and subarctic areas in Europe and North America. In our data, gammaproteobacterial methanotrophs (order Methylococcales) generally dominated the methanotrophic communities throughout the water columns. A recently discovered lineage of Methylococcales, Candidatus Methylumidiphilus, was present in all the studied water bodies and dominated the methanotrophic community in lakes with a high relative abundance of methanotrophs. Alphaproteobacterial methanotrophs were the second most abundant group of methanotrophs. In the top layer of the lakes, characterized by low CH4 concentration, their abundance could surpass that of the gammaproteobacterial methanotrophs. These results support the theory that the alphaproteobacterial methanotrophs have a high affinity for CH4 and can be considered stress-tolerant strategists. In contrast, the gammaproteobacterial methanotrophs are competitive strategists. In addition, relative abundances of anaerobic methanotrophs, Candidatus Methanoperedenaceae and Candidatus Methylomirabilis, were strongly correlated, suggesting possible co-metabolism. Our data also suggest that these anaerobic methanotrophs could be active even in the oxic layers. In non-metric multidimensional scaling, alpha- and gammaproteobacterial methanotrophs formed separate clusters based on their abundances in the samples, except for the gammaproteobacterial Candidatus Methylumidiphilus, which was separated from these two clusters. This may reflect similarities in the niche and environmental requirements of the different genera within alpha- and gammaproteobacterial methanotrophs. Our study confirms the importance of O2 and CH4 in shaping the methanotrophic communities and suggests that one variable cannot explain the diversity and distribution of the methanotrophs across lakes. Instead, we suggest that the diversity and distribution of freshwater methanotrophs are regulated by lake-specific factors.
RESUMO
Photosynthetic bacteria from the class Chlorobia (formerly phylum Chlorobi) sustain carbon fixation in anoxic water columns. They harvest light at extremely low intensities and use various inorganic electron donors to fix carbon dioxide into biomass. Until now, most information on the functional ecology and local adaptations of Chlorobia members came from isolates and merely 26 sequenced genomes that may not adequately represent natural populations. To address these limitations, we analyzed global metagenomes to profile planktonic Chlorobia cells from the oxyclines of 42 freshwater bodies, spanning subarctic to tropical regions and encompassing all four seasons. We assembled and compiled over 500 genomes, including metagenome-assembled genomes (MAGs), single-amplified genomes (SAGs), and reference genomes from cultures, clustering them into 71 metagenomic operational taxonomic units (mOTUs or "species"). Of the 71 mOTUs, 57 were classified within the genus Chlorobium, and these mOTUs represented up to â¼60% of the microbial communities in the sampled anoxic waters. Several Chlorobium-associated mOTUs were globally distributed, whereas others were endemic to individual lakes. Although most clades encoded the ability to oxidize hydrogen, many lacked genes for the oxidation of specific sulfur and iron substrates. Surprisingly, one globally distributed Scandinavian clade encoded the ability to oxidize hydrogen, sulfur, and iron, suggesting that metabolic versatility facilitated such widespread colonization. Overall, these findings provide new insight into the biogeography of the Chlorobia and the metabolic traits that facilitate niche specialization within lake ecosystems.IMPORTANCE The reconstruction of genomes from metagenomes has helped explore the ecology and evolution of environmental microbiota. We applied this approach to 274 metagenomes collected from diverse freshwater habitats that spanned oxic and anoxic zones, sampling seasons, and latitudes. We demonstrate widespread and abundant distributions of planktonic Chlorobia-associated bacteria in hypolimnetic waters of stratified freshwater ecosystems and show they vary in their capacities to use different electron donors. Having photoautotrophic potential, these Chlorobia members could serve as carbon sources that support metalimnetic and hypolimnetic food webs.
RESUMO
Stratified lakes and ponds featuring steep oxygen gradients are significant net sources of greenhouse gases and hotspots in the carbon cycle. Despite their significant biogeochemical roles, the microbial communities, especially in the oxygen depleted compartments, are poorly known. Here, we present a comprehensive dataset including 267 shotgun metagenomes from 41 stratified lakes and ponds mainly located in the boreal and subarctic regions, but also including one tropical reservoir and one temperate lake. For most lakes and ponds, the data includes a vertical sample set spanning from the oxic surface to the anoxic bottom layer. The majority of the samples were collected during the open water period, but also a total of 29 samples were collected from under the ice. In addition to the metagenomic sequences, the dataset includes environmental variables for the samples, such as oxygen, nutrient and organic carbon concentrations. The dataset is ideal for further exploring the microbial taxonomic and functional diversity in freshwater environments and potential climate change impacts on the functioning of these ecosystems.
Assuntos
Lagos/microbiologia , Metagenoma , Microbiota/genética , Oxigênio/análise , Lagoas/microbiologia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Ciclo do Carbono , Mudança Climática , Gases de Efeito Estufa/análise , Lagos/química , Filogenia , Lagoas/químicaRESUMO
Our view of genome size in Archaea and Bacteria has remained skewed as the data has been dominated by genomes of microorganisms that have been cultivated under laboratory settings. However, the continuous effort to catalog Earth's microbiomes, specifically propelled by recent extensive work on uncultivated microorganisms, provides an opportunity to revise our perspective on genome size distribution. We present a meta-analysis that includes 26,101 representative genomes from 3 published genomic databases; metagenomic assembled genomes (MAGs) from GEMs and stratfreshDB, and isolates from GTDB. Aquatic and host-associated microbial genomes present on average the smallest estimated genome sizes (3.1 and 3.0 Mbp, respectively). These are followed by terrestrial microbial genomes (average 3.7 Mbp), and genomes from isolated microorganisms (average 4.3 Mbp). On the one hand, aquatic and host-associated ecosystems present smaller genomes sizes in genera of phyla with genome sizes above 3 Mbp. On the other hand, estimated genome size in phyla with genomes under 3 Mbp showed no difference between ecosystems. Moreover, we observed that when using 95% average nucleotide identity (ANI) as an estimator for genetic units, only 3% of MAGs cluster together with genomes from isolated microorganisms. Although there are potential methodological limitations when assembling and binning MAGs, we found that in genome clusters containing both environmental MAGs and isolate genomes, MAGs were estimated only an average 3.7% smaller than isolate genomes. Even when assembly and binning methods introduce biases, estimated genome size of MAGs and isolates are very similar. Finally, to better understand the ecological drivers of genome size, we discuss on the known and the overlooked factors that influence genome size in different ecosystems, phylogenetic groups, and trophic strategies.