Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 209(8): 1450-1464, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36192116

RESUMO

Pregnancy success requires constant dialogue between the mother and developing conceptus. Such crosstalk is facilitated through complex interactions between maternal and fetal cells at distinct tissue sites, collectively termed the "maternal-fetal interface." The emergence of single-cell technologies has enabled a deeper understanding of the unique processes taking place at the maternal-fetal interface as well as the discovery of novel pathways and immune and nonimmune cell types. Single-cell approaches have also been applied to decipher the cellular dynamics throughout pregnancy, in parturition, and in obstetrical syndromes such as recurrent spontaneous abortion, preeclampsia, and preterm labor. Furthermore, single-cell technologies have been used during the recent COVID-19 pandemic to evaluate placental viral cell entry and the impact of SARS-CoV-2 infection on maternal and fetal immunity. In this brief review, we summarize the current knowledge of cellular immunobiology in pregnancy and its complications that has been generated through single-cell investigations of the maternal-fetal interface.


Assuntos
COVID-19 , Placenta , Feminino , Humanos , Recém-Nascido , Pandemias , Parto , Gravidez , SARS-CoV-2
2.
J Immunol ; 208(8): 1857-1872, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379748

RESUMO

Pregnant women are at increased risk of adverse outcomes, including preeclampsia and preterm birth, that may result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pregnancy imprints specific maternal immune responses that can modulate host susceptibility to microbial infection; therefore, recent studies have focused on the humoral response against SARS-CoV-2 in pregnant women. However, the pregnancy-specific cellular immune responses triggered by SARS-CoV-2 infection are poorly understood. In this study, we undertook an extensive in vitro investigation to determine the cellular immune responses to SARS-CoV-2 particles and proteins/peptides in pregnant women. First, we show that SARS-CoV-2 particles do not alter the pregnancy-specific oxidative burst of neutrophils and monocytes. Yet, SARS-CoV-2 particles/proteins shift monocyte activation from the classical to intermediate states in pregnant, but not in nonpregnant, women. Furthermore, SARS-CoV-2 proteins, but not particles or peptide pools, mildly enhance T cell activation during pregnancy. As expected, B cell phenotypes are heavily modulated by SARS-CoV-2 particles in all women; yet, pregnancy itself further modified such responses in these adaptive immune cells. Lastly, we report that pregnancy itself governs cytokine responses in the maternal circulation, of which IFN-ß and IL-8 were diminished upon SARS-CoV-2 challenge. Collectively, these findings highlight the differential in vitro responses to SARS-CoV-2 in pregnant and nonpregnant women and shed light on the immune mechanisms implicated in coronavirus disease 2019 during pregnancy.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Nascimento Prematuro , Feminino , Humanos , Imunidade Celular , Recém-Nascido , Gravidez , Resultado da Gravidez , Gestantes , SARS-CoV-2
3.
Reproduction ; 164(2): R11-R45, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35559791

RESUMO

In brief: The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract: Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Feminino , Homeostase , Humanos , Recém-Nascido , Inflamação/metabolismo , Trabalho de Parto Prematuro/etiologia , Trabalho de Parto Prematuro/prevenção & controle , Parto , Gravidez , Nascimento Prematuro/etiologia , Nascimento Prematuro/prevenção & controle
4.
Infect Immun ; 89(5)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558326

RESUMO

Preterm labor precedes premature birth, the leading cause of neonatal morbidity and mortality worldwide. Preterm labor can occur in the context of either microbe-associated intra-amniotic inflammation (i.e., intra-amniotic infection) or intra-amniotic inflammation in the absence of detectable microorganisms (i.e., sterile intra-amniotic inflammation). Both intra-amniotic infection and sterile intra-amniotic inflammation trigger local immune responses that have deleterious effects on fetal life. Yet, the extent of such immune responses in the fetal tissues surrounding the amniotic cavity (i.e., the chorioamniotic membranes) is poorly understood. By using RNA sequencing (RNA seq) as a discovery approach, we found that there were significant transcriptomic differences involving host response to pathogens in the chorioamniotic membranes of women with intra-amniotic infection compared to those from women without inflammation. In addition, the sterile or microbial nature of intra-amniotic inflammation was associated with distinct transcriptomic profiles in the chorioamniotic membranes. Moreover, the immune response in the chorioamniotic membranes of women with sterile intra-amniotic inflammation was milder in nature than that induced by microbes and involved the upregulation of alarmins and inflammasome-related molecules. Lastly, the presence of maternal and fetal inflammatory responses in the placenta was associated with the upregulation of immune processes in the chorioamniotic membranes. Collectively, these findings provide insight into the immune responses against microbes or alarmins that take place in the fetal tissues surrounding the amniotic cavity, shedding light on the immunobiology of preterm labor and birth.


Assuntos
Membrana Corioalantoide/imunologia , Membrana Corioalantoide/microbiologia , Inflamação/etiologia , Trabalho de Parto Prematuro/etiologia , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Trabalho de Parto Prematuro/metabolismo , Gravidez , Análise de Sequência de RNA , Transcriptoma
5.
Biol Reprod ; 105(6): 1494-1509, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34632484

RESUMO

Sterile inflammation is triggered by danger signals, or alarmins, released upon cellular stress or necrosis. Sterile inflammation occurring in the amniotic cavity (i.e. sterile intra-amniotic inflammation) is frequently observed in women with spontaneous preterm labor resulting in preterm birth, the leading cause of neonatal morbidity and mortality worldwide; this condition is associated with increased amniotic fluid concentrations of alarmins. However, the mechanisms whereby alarmins induce sterile intra-amniotic inflammation are still under investigation. Herein, we investigated the mechanisms whereby the alarmin S100A12 induces inflammation of the human chorioamniotic membranes in vitro and used a mouse model to establish a causal link between this alarmin and adverse perinatal outcomes. We report that S100A12 initiates sterile inflammation in the chorioamniotic membranes by upregulating the expression of inflammatory mediators such as pro-inflammatory cytokines and pattern recognition receptors. Importantly, S100A12 induced the priming and activation of inflammasomes, resulting in caspase-1 cleavage and the subsequent release of mature IL-1ß by the chorioamniotic membranes. This alarmin also caused the activation of the chorioamniotic membranes by promoting MMP-2 activity and collagen degradation. Lastly, the ultrasound-guided intra-amniotic injection of S100A12 at specific concentrations observed in the majority of women with sterile intra-amniotic inflammation induced preterm birth (rates: 17% at 200 ng/sac; 25% at 300 ng/sac; 25% at 400 ng/sac) and neonatal mortality (rates: 22% at 200 ng/sac; 44% at 300 ng/sac; 31% at 400 ng/sac), thus demonstrating a causal link between this alarmin and adverse perinatal outcomes. Collectively, our findings shed light on the inflammatory responses driven by alarmins in the chorioamniotic membranes, providing insight into the immune mechanisms leading to preterm birth in women with sterile intra-amniotic inflammation.


Assuntos
Âmnio/metabolismo , Inflamação/genética , Nascimento Prematuro/genética , Proteína S100A12/genética , Animais , Modelos Animais de Doenças , Humanos , Lactente , Mortalidade Infantil , Camundongos , Proteína S100A12/metabolismo
6.
J Immunol ; 203(11): 2757-2769, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740550

RESUMO

Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1ß are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.


Assuntos
Inflamassomos/imunologia , Complicações na Gravidez/imunologia , Gravidez/imunologia , Animais , Feminino , Humanos
7.
J Immunol ; 203(7): 1793-1807, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492740

RESUMO

Prematurity is the leading cause of perinatal morbidity and mortality worldwide. In most cases, preterm birth is preceded by spontaneous preterm labor, a syndrome that is associated with intra-amniotic inflammation, the most studied etiology. However, the remaining etiologies of preterm labor are poorly understood; therefore, most preterm births are categorized as idiopathic. In this study, we provide evidence showing that the fetal immune system undergoes premature activation in women with preterm labor without intra-amniotic inflammation, providing a potential new mechanism of disease for some cases of idiopathic preterm birth. First, we showed that fetal T cells are a predominant leukocyte population in amniotic fluid during preterm gestations. Interestingly, only fetal CD4+ T cells were increased in amniotic fluid of women who underwent idiopathic preterm labor and birth. This increase in fetal CD4+ T cells was accompanied by elevated amniotic fluid concentrations of T cell cytokines such as IL-2, IL-4, and IL-13, which are produced by these cells upon in vitro stimulation, but was not associated with the prototypical cytokine profile observed in women with intra-amniotic inflammation. Also, we found that cord blood T cells, mainly CD4+ T cells, obtained from women with idiopathic preterm labor and birth displayed enhanced ex vivo activation, which is similar to that observed in women with intra-amniotic inflammation. Finally, we showed that the intra-amniotic administration of activated neonatal CD4+ T cells induces preterm birth in mice. Collectively, these findings provide evidence suggesting that fetal T cell activation is implicated in the pathogenesis of idiopathic preterm labor and birth.


Assuntos
Âmnio/imunologia , Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Feto/imunologia , Ativação Linfocitária , Trabalho de Parto Prematuro/imunologia , Adulto , Âmnio/patologia , Animais , Linfócitos T CD4-Positivos/patologia , Feminino , Feto/patologia , Humanos , Camundongos , Trabalho de Parto Prematuro/patologia , Gravidez
8.
J Immunol ; 202(9): 2585-2608, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30918041

RESUMO

Preterm labor commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. Most research has focused on establishing a causal link between innate immune activation and pathological inflammation leading to preterm labor and birth. However, the role of maternal effector/activated T cells in the pathogenesis of preterm labor/birth is poorly understood. In this study, we first demonstrated that effector memory and activated maternal T cells expressing granzyme B and perforin are enriched at the maternal-fetal interface (decidua) of women with spontaneous preterm labor. Next, using a murine model, we reported that prior to inducing preterm birth, in vivo T cell activation caused maternal hypothermia, bradycardia, systemic inflammation, cervical dilation, intra-amniotic inflammation, and fetal growth restriction, all of which are clinical signs associated with preterm labor. In vivo T cell activation also induced B cell cytokine responses, a proinflammatory macrophage polarization, and other inflammatory responses at the maternal-fetal interface and myometrium in the absence of an increased influx of neutrophils. Finally, we showed that treatment with progesterone can serve as a strategy to prevent preterm labor/birth and adverse neonatal outcomes by attenuating the proinflammatory responses at the maternal-fetal interface and cervix induced by T cell activation. Collectively, these findings provide mechanistic evidence showing that effector and activated T cells cause pathological inflammation at the maternal-fetal interface, in the mother, and in the fetus, inducing preterm labor and birth and adverse neonatal outcomes. Such adverse effects can be prevented by treatment with progesterone, a clinically approved strategy.


Assuntos
Linfócitos B , Ativação Linfocitária/efeitos dos fármacos , Placenta , Nascimento Prematuro , Progesterona/administração & dosagem , Linfócitos T , Adulto , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Humanos , Placenta/imunologia , Placenta/patologia , Gravidez , Nascimento Prematuro/imunologia , Nascimento Prematuro/patologia , Nascimento Prematuro/prevenção & controle , Linfócitos T/imunologia , Linfócitos T/patologia
9.
Genes Immun ; 20(1): 56-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29362510

RESUMO

Prior to and during the process of human labor, maternal circulating leukocytes infiltrate the maternal-fetal interface (choriodecidua) and become activated resembling choriodecidual leukocytes. Since, there is no evidence comparing maternal circulating and choriodecidual leukocytes, herein, we characterized their transcriptome and explored the biological processes enriched in choriodecidual leukocytes. From women undergoing spontaneous term labor we isolated circulating and choriodecidual leukocytes, performed microarray analysis (n = 5) and qRT-PCR validation (n = 9) and interaction network analysis with up-regulated genes. We found 270 genes up-regulated and only 17 genes down-regulated in choriodecidual leukocytes compared to maternal circulating leukocytes. The most up-regulated genes were CCL18, GPNMB, SEPP1, FN1, RNASE1, SPP1, C1QC, and PLTP. The biological processes enriched in choriodecidual leukocytes were cell migration and regulation of immune response, chemotaxis, and humoral immune responses. Our results show striking differences between the transcriptome of choriodecidual and maternal circulating leukocytes. Choriodecidual leukocytes are enriched in immune mediators implicated in the spontaneous process of labor at term.


Assuntos
Decídua/metabolismo , Trabalho de Parto/genética , Leucócitos/metabolismo , Transcriptoma , Adulto , Decídua/citologia , Feminino , Humanos , Trabalho de Parto/sangue , Trabalho de Parto/metabolismo , Gravidez
10.
Neuroimage ; 200: 601-606, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158477

RESUMO

PURPOSE: To achieve sufficient precision of R1 (=1/T1) maps of the fetal brain in utero to perform QUEnch-assiSTed (QUEST) MRI in which a significant anti-oxidant-induced reduction in R1 indicates oxidative stress. METHODS: C57BL/6 mouse fetuses in utero were gently and non-surgically isolated and secured using a homemade 3D printed clip. Using a commercial receive-only surface coil, brain maps of R1, an index sensitive to excessive and continuous free radical production, were collected using either a conventional Cartesian or a non-Cartesian (periodically rotated overlapping parallel lines with enhanced reconstruction) progressive saturation sequence. Data were normalized to the shortest TR time to remove bias. To assess oxidative stress, brain R1 maps were acquired on the lipopolysaccharide (LPS) model of preterm birth ±â€¯rosiglitazone (ROSI, which has anti-oxidant properties); phosphate buffered saline (PBS) controls ±â€¯ROSI were similarly studied. RESULTS: Sufficient quality R1 maps were generated by a combination of the 3D printed clip, surface coil detection, non-Cartesian sequence, and normalization scheme ensuring minimal fetal movement, good detection sensitivity, reduced motion artifacts, and minimal baseline variations, respectively. In the LPS group, the combined caudate-putamen and thalamus region R1 was reduced (p < 0.05) with ROSI treatment consistent with brain oxidative stress; no evidence for oxidative stress was found in the pons region. In the PBS control group, brain R1's did not change with ROSI treatment. CONCLUSION: The sensitivity and reproducibility of the combined approaches described herein enabled first-time demonstration of regional oxidative stress measurements of the fetal brain in utero using QUEST MRI.


Assuntos
Encéfalo/diagnóstico por imagem , Embrião de Mamíferos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Estresse Oxidativo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Diagnóstico Pré-Natal
11.
Biol Reprod ; 100(5): 1306-1318, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596885

RESUMO

Sterile intra-amniotic inflammation is commonly observed in patients with spontaneous preterm labor, a syndrome that commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. However, the mechanisms leading to sterile intra-amniotic inflammation are poorly understood and no treatment exists for this clinical condition. Herein, we investigated whether the alarmin S100B could induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome, and whether the inhibition of this pathway could prevent preterm labor/birth and adverse neonatal outcomes. We found that the ultrasound-guided intra-amniotic administration of S100B induced a 50% rate of preterm labor/birth and a high rate of neonatal mortality (59.7%) without altering the fetal and placental weights. Using a multiplex cytokine array and immunoblotting, we reported that S100B caused a proinflammatory response in the amniotic cavity and induced the activation of the NLRP3 inflammasome in the fetal membranes, indicated by the upregulation of the NLRP3 protein and increased release of active caspase-1 and mature IL-1ß. Inhibition of the NLRP3 inflammasome via the specific inhibitor MCC950 prevented preterm labor/birth by 35.7% and reduced neonatal mortality by 26.7%. Yet, inhibition of the NLRP3 inflammasome at term did not drastically obstruct the physiological process of parturition. In conclusion, the data presented herein indicate that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway. These findings provide evidence that sterile intra-amniotic inflammation could be treated by targeting the NLRP3 inflammasome.


Assuntos
Furanos/farmacologia , Inflamação/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Trabalho de Parto Prematuro/prevenção & controle , Nascimento Prematuro/prevenção & controle , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia , Sulfonamidas/farmacologia , Animais , Animais Recém-Nascidos , Citocinas/genética , Citocinas/metabolismo , Feminino , Feto/efeitos dos fármacos , Furanos/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis , Indenos , Inflamação/induzido quimicamente , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trabalho de Parto Prematuro/induzido quimicamente , Placenta/efeitos dos fármacos , Gravidez , Nascimento Prematuro/induzido quimicamente , Subunidade beta da Proteína Ligante de Cálcio S100/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonas
12.
Biol Reprod ; 100(5): 1290-1305, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590393

RESUMO

Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1ß were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.


Assuntos
Inflamassomos/metabolismo , Inflamação/induzido quimicamente , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nascimento Prematuro/etiologia , Líquido Amniótico , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/genética , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Trabalho de Parto Prematuro/etiologia , Gravidez
13.
J Immunol ; 196(6): 2476-2491, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26889045

RESUMO

Decidual macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo a proinflammatory (M1) polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone (RSG) would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. In this study, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) anti-inflammatory (M2)-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared with term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL-12 but low levels of peroxisome proliferator-activated receptor γ (PPARγ) during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with RSG reduces the expression of TNF and IL-12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with RSG reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic proinflammatory response and downregulating mRNA and protein expression of NF-κB, TNF, and IL-10 in decidual and myometrial macrophages in C57BL/6J mice. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor and that PPARγ activation via RSG can attenuate the macrophage-mediated proinflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.


Assuntos
Diferenciação Celular/imunologia , Decídua/imunologia , Macrófagos/imunologia , Trabalho de Parto Prematuro/imunologia , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Decídua/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Imunofenotipagem , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , PPAR gama/agonistas , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Rosiglitazona , Tiazolidinedionas/farmacologia
14.
Am J Obstet Gynecol ; 217(5): 592.e1-592.e17, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847437

RESUMO

BACKGROUND: Decidual senescence has been considered a mechanism of disease for spontaneous preterm labor in the absence of severe acute inflammation. Yet, signs of cellular senescence have also been observed in the chorioamniotic membranes from women who underwent the physiological process of labor at term. OBJECTIVE: We aimed to investigate whether, in the absence of acute histologic chorioamnionitis, the chorioamniotic membranes from women who underwent spontaneous preterm labor or labor at term exhibit signs of cellular senescence. STUDY DESIGN: Chorioamniotic membrane samples were collected from women who underwent spontaneous preterm labor or labor at term. Gestational age-matched nonlabor controls were also included. Senescence-associated genes/proteins were determined using reverse transcription quantitative polymerase chain reaction analysis (n = 7-9 each for array; n = 26-28 each for validation), enzyme-linked immunosorbent assays (n = 7-9 each), immunoblotting (n = 6-7 each), and immunohistochemistry (n = 7-8 each). Senescence-associated ß-galactosidase activity (n = 7-11 each) and telomere length (n = 15-22 each) were also evaluated. RESULTS: In the chorioamniotic membranes without acute histologic chorioamnionitis: (1) the expression profile of senescence-associated genes was different between the labor groups (term in labor and preterm in labor) and the nonlabor groups (term no labor and preterm no labor), yet there were differences between the term in labor and preterm in labor groups; (2) most of the differentially expressed genes among the groups were closely related to the tumor suppressor protein (TP53) pathway; (3) the expression of TP53 was down-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (4) the expression of CDKN1A (gene coding for p21) was up-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (5) the expression of the cyclin kinase CDK2 and cyclins CCNA2, CCNB1, and CCNE1 was down-regulated in the preterm in labor group compared to the preterm no labor group; (6) the concentration of TP53 was lower in the preterm in labor group than in the preterm no labor and term in labor groups; (7) the senescence-associated ß-galactosidase activity was greater in the preterm in labor group than in the preterm no labor and term in labor groups; (8) the concentration of phospho-S6 ribosomal protein was reduced in the term in labor group compared to its nonlabor counterpart, but no differences were observed between the preterm in labor and preterm no labor groups; and (9) no significant differences were observed in relative telomere length among the study groups (term no labor, term in labor, preterm no labor, and preterm in labor). CONCLUSION: In the absence of acute histologic chorioamnionitis, signs of cellular senescence are present in the chorioamniotic membranes from women who underwent spontaneous preterm labor compared to those who delivered preterm in the absence of labor. However, the chorioamniotic membranes from women who underwent spontaneous labor at term did not show consistent signs of cellular senescence in the absence of histologic chorioamnionitis. These results suggest that different pathways are implicated in the pathological and physiological processes of labor.


Assuntos
Âmnio/citologia , Senescência Celular/genética , Córion/citologia , Trabalho de Parto/genética , Trabalho de Parto Prematuro/genética , Adulto , Âmnio/metabolismo , Corioamnionite/patologia , Córion/metabolismo , Ciclina A2/genética , Ciclina B1/genética , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Idade Gestacional , Humanos , Imuno-Histoquímica , Trabalho de Parto/metabolismo , Trabalho de Parto Prematuro/metabolismo , Proteínas Oncogênicas/genética , Fosfoproteínas/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína S6 Ribossômica/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adulto Jovem , beta-Galactosidase/metabolismo
15.
Am J Obstet Gynecol ; 217(6): 693.e1-693.e16, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28964823

RESUMO

BACKGROUND: Neutrophils are the most abundant white blood cells found in the amniotic cavity of women with intraamniotic infection and/or inflammation. The current belief is that these neutrophils are of fetal origin. However, abundant neutrophils have been found in the amniotic fluid of women with a severe acute maternal inflammatory response but without a severe fetal inflammatory response in the placenta, suggesting that these innate immune cells can also be of maternal origin or a mixture of both fetal and maternal neutrophils. OBJECTIVE: We sought to investigate the origin of amniotic fluid neutrophils from women with intraamniotic infection and/or inflammation and to correlate these findings with acute histologic maternal and fetal inflammatory responses in the placenta. STUDY DESIGN: Amniotic fluid was collected from 15 women with suspected intraamniotic infection and/or inflammation (positive microbiological cultures and/or interleukin-6 concentrations ≥2.6 ng/mL). Amniotic fluid neutrophils were purified by fluorescence-activated cell sorting, DNA was extracted, and DNA fingerprinting was performed. DNA fingerprinting was also performed in the umbilical cord and maternal blood DNA. Fluorescence in situ hybridization was assayed in women with male neonates. Blinded placental histopathological evaluations were conducted. RESULTS: First, DNA fingerprinting revealed that 43% (6/14) of women who underwent a single amniocentesis had mostly fetal neutrophils in the amniotic fluid. Second, DNA fingerprinting showed that 36% (5/14) of the women who underwent a single amniocentesis had predominantly maternal neutrophils in the amniotic fluid. Third, DNA fingerprinting indicated that 21% (3/14) of the women who underwent a single amniocentesis had an evident mixture of fetal and maternal neutrophils in the amniotic fluid. Fourth, DNA fingerprinting revealed that a woman who underwent 2 amniocenteses (patient 15) had fetal neutrophils first, and as infection progressed, abundant maternal neutrophils invaded the amniotic cavity. Fifth, fluorescence in situ hybridization confirmed DNA fingerprinting results by showing that both fetal and maternal neutrophils were present in the amniotic fluid. Sixth, most of the women who had predominantly amniotic fluid neutrophils of fetal origin at the time of collection delivered extremely preterm neonates (71% [5/7]). Seventh, all of the women who had predominantly amniotic fluid neutrophils of maternal origin at the time of collection delivered term or late preterm neonates (100% [6/6]). Eighth, 2 of the women who had an evident mixture of fetal and maternal neutrophils in the amniotic fluid at the time of collection delivered extremely preterm neonates (67% [2/3]), and the third woman delivered a term neonate (33% [1/3]). Finally, most of the women included in this study presented acute maternal and fetal inflammatory responses in the placenta (87% [13/15]). CONCLUSION: Amniotic fluid neutrophils can be either predominantly of fetal or maternal origin, or a mixture of both fetal and maternal origin, in women with intraamniotic infection and/or inflammation. The findings herein provide evidence that both fetal and maternal neutrophils can invade the amniotic cavity, suggesting that both the fetus and the mother participate in the host defense mechanisms against intraamniotic infection.


Assuntos
Líquido Amniótico/citologia , Corioamnionite/imunologia , Neutrófilos/citologia , Adulto , Amniocentese , Líquido Amniótico/imunologia , Estudos Transversais , Citocinas/imunologia , Impressões Digitais de DNA , Progressão da Doença , Feminino , Citometria de Fluxo , Idade Gestacional , Humanos , Hibridização in Situ Fluorescente , Inflamação , Interleucina-6/imunologia , Contagem de Leucócitos , Repetições de Microssatélites , Neutrófilos/metabolismo , Gravidez , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/imunologia , Nascimento a Termo/imunologia
16.
Methods Mol Biol ; 2781: 143-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502450

RESUMO

The dissociation of whole tissue into single-cell suspensions is a critical step for techniques focused on profiling of individual cells. Here, we describe a protocol for the preparation of high-quality single-cell suspensions from human placental tissues: the basal plate (BP), placental villi (PV), and chorioamniotic membranes (CAM). This protocol also provides guidance for the cryopreservation and recovery of single-cell suspensions for later use. The methods described here have been demonstrated to be suitable for downstream single-cell applications, such as single-cell RNA-sequencing, that require viable, high-quality cell suspensions.


Assuntos
Criopreservação , Placenta , Gravidez , Feminino , Humanos
17.
Sci Transl Med ; 16(729): eadh8335, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38198568

RESUMO

Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.


Assuntos
Nascimento Prematuro , Recém-Nascido , Gravidez , Humanos , Feminino , Placenta , Transdução de Sinais , Análise de Sequência de RNA , Parto
18.
Nat Protoc ; 18(3): 732-754, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36451054

RESUMO

Single-cell RNA-sequencing (scRNA-seq) allows the characterization of cellular composition and interactions in complex tissues. An essential prerequisite for scRNA-seq is the preparation of high-quality single-cell suspensions. So far, no protocols have been described for preparing such suspensions from the placenta, an essential organ for fetal development and a site of maternal-fetal immune interaction. Here we describe a protocol for the preparation of high-quality single-cell suspensions from human placental tissues-namely, the basal plate, placental villi and chorioamniotic membranes. The protocol outlines the collection of tissues from the placenta, tailored dissociation procedures for each tissue, and the cryopreservation of single-cell suspensions for multiplex sequencing library preparation. The protocol can be performed by a qualified investigator with basic working knowledge of placental structure. Moreover, the single-cell suspensions generated by using this protocol are compatible with droplet-based scRNA-seq technology, such as the 10x Genomics Chromium system. This protocol reliably produces single-cell suspensions from the placental tissues with high yield and viability for scRNA-seq. This protocol takes ~6 h to complete from tissue collection to cryopreservation of single-cell suspensions, and an additional 2 h for thawing of cryopreserved single cells.


Assuntos
Placenta , Análise de Célula Única , Humanos , Gravidez , Feminino , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Genômica , Criopreservação , Perfilação da Expressão Gênica/métodos
19.
Cell Rep ; 42(1): 111846, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36599348

RESUMO

Preterm birth, the leading cause of perinatal morbidity and mortality worldwide, frequently results from the syndrome of preterm labor. The best-established causal link to preterm labor is intra-amniotic infection, which involves premature activation of the parturition cascade in the reproductive tissues. Herein, we utilize single-cell RNA sequencing (scRNA-seq) to generate a single-cell atlas of the murine uterus, decidua, and cervix in a model of infection-induced preterm labor. We show that preterm labor affects the transcriptomic profiles of specific immune and non-immune cell subsets. Shared and tissue-specific gene expression signatures are identified among affected cells. Determination of intercellular communications implicates specific cell types in preterm labor-associated signaling pathways across tissues. In silico comparison of murine and human uterine cell-cell interactions reveals conserved signaling pathways implicated in labor. Thus, our scRNA-seq data provide insights into the preterm labor-driven cellular landscape and communications in reproductive tissues.


Assuntos
Trabalho de Parto , Trabalho de Parto Prematuro , Nascimento Prematuro , Gravidez , Feminino , Recém-Nascido , Camundongos , Animais , Humanos , Trabalho de Parto Prematuro/genética , Parto , Trabalho de Parto/genética , Útero
20.
Transl Res ; 259: 46-61, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37121539

RESUMO

Preterm birth remains the leading cause of neonatal morbidity and mortality worldwide. A substantial number of spontaneous preterm births occur in the context of sterile intra-amniotic inflammation, a condition that has been mechanistically proven to be triggered by alarmins. However, sterile intra-amniotic inflammation still lacks treatment. The NLRP3 inflammasome has been implicated in sterile intra-amniotic inflammation; yet, its underlying mechanisms, as well as the maternal and fetal contributions to this signaling pathway, are unclear. Herein, by utilizing a translational and clinically relevant model of alarmin-induced preterm labor and birth in Nlrp3-/- mice, we investigated the role of NLRP3 signaling by using imaging and molecular biology approaches. Nlrp3 deficiency abrogated preterm birth and the resulting neonatal mortality induced by the alarmin S100B by impeding the premature activation of the common pathway of labor as well as by dampening intra-amniotic and fetal inflammation. Moreover, Nlrp3 deficiency altered leukocyte infiltration and functionality in the uterus and decidua. Last, embryo transfer revealed that maternal and fetal Nlrp3 signaling contribute to alarmin-induced preterm birth and neonatal mortality, further strengthening the concept that both individuals participate in the complex process of preterm parturition. These findings provide novel insights into sterile intra-amniotic inflammation, a common etiology of preterm labor and birth, suggesting that the adverse perinatal outcomes resulting from prematurity can be prevented by targeting NLRP3 signaling.


Assuntos
Trabalho de Parto Prematuro , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Animais , Camundongos , Alarminas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trabalho de Parto Prematuro/metabolismo , Inflamação/induzido quimicamente , Líquido Amniótico/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa