RESUMO
NFIL3 is a transcription factor that regulates multiple immunologic functions. In myeloid cells, NFIL3 is IL-10 inducible and has a key role as a repressor of IL-12p40 transcription. NFIL3 is a susceptibility gene for the human inflammatory bowel diseases. In this article, we describe spontaneous colitis in Nfil3(-/-) mice. Mice lacking both Nfil3 and Il10 had severe early-onset colitis, suggesting that NFIL3 and IL-10 independently regulate mucosal homeostasis. Lymphocytes were necessary for colitis, because Nfil3/Rag1 double-knockout mice were protected from disease. However, Nfil3/Rag1 double-knockout mice adoptively transferred with wild-type CD4(+) T cells developed severe colitis compared with Rag1(-/-) recipients, suggesting that colitis was linked to defects in innate immune cells. Colitis was abrogated in Nfil3/Il12b double-deficient mice, identifying Il12b dysregulation as a central pathogenic event. Finally, germ-free Nfil3(-/-) mice do not develop colonic inflammation. Thus, NFIL3 is a microbiota-dependent, IL-10-independent regulator of mucosal homeostasis via IL-12p40.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Interleucina-10/genética , Subunidade p40 da Interleucina-12/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Microbiota/imunologia , Transferência Adotiva , Animais , Proteínas de Arabidopsis/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Cultivadas , Colo/imunologia , Colo/patologia , Predisposição Genética para Doença , Subunidade p40 da Interleucina-12/genética , Subunidade p19 da Interleucina-23/genética , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Células Th17/imunologia , Fator de Necrose Tumoral alfa/genéticaRESUMO
Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.
Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Vírus da Imunodeficiência Símia/genética , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Linfócitos T CD8-Positivos , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológicoRESUMO
The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.
Assuntos
Terapia Genética/métodos , Globinas/genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Primers do DNA/genética , Elementos Facilitadores Genéticos , Feminino , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos , Íntrons , Região de Controle de Locus Gênico , Masculino , Camundongos , Camundongos Transgênicos , Fator 1 de Transcrição de Octâmero/metabolismo , Gravidez , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Significant advances in our understanding of the in vivo functions of human cells and tissues and the human immune system have resulted from the development of 'humanized' mouse strains that are based on severely immunodeficient mice with mutations in the interleukin-2 receptor common γ-chain locus. These mouse strains support the engraftment of a functional human immune system and permit detailed analyses of human immune biology, development and functions. In this Review, we discuss recent advances in the development and utilization of humanized mice, the lessons learnt, the remaining challenges and the promise of using humanized mice for the in vivo study of human immunology.