Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 30(1): 151-159, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38302194

RESUMO

Analysis of bone marrow aspirates (BMAs) is an essential step in the diagnosis of hematological disorders. This analysis is usually performed based on a visual examination of samples under a conventional optical microscope, which involves a labor-intensive process, limited by clinical experience and subject to high observer variability. In this work, we present a comprehensive digital microscopy system that enables BMA analysis for cell type counting and differentiation in an efficient and objective manner. This system not only provides an accessible and simple method to digitize, store, and analyze BMA samples remotely but is also supported by an Artificial Intelligence (AI) pipeline that accelerates the differential cell counting process and reduces interobserver variability. It has been designed to integrate AI algorithms with the daily clinical routine and can be used in any regular hospital workflow.


Assuntos
Inteligência Artificial , Doenças Hematológicas , Humanos , Medula Óssea , Microscopia , Doenças Hematológicas/diagnóstico , Algoritmos
2.
Malar J ; 18(1): 21, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678733

RESUMO

BACKGROUND: Current World Health Organization recommendations for the management of malaria include the need for a parasitological confirmation prior to triggering appropriate treatment. The use of rapid diagnostic tests (RDTs) for malaria has contributed to a better infection recognition and a more targeted treatment. Nevertheless, low-density infections and parasites that fail to produce HRP2 can cause false-negative RDT results. Microscopy has traditionally been the methodology most commonly used to quantify malaria and characterize the infecting species, but the wider use of this technique remains challenging, as it requires trained personnel and processing capacity. OBJECTIVE: In this study, the feasibility of an on-line system for remote malaria species identification and differentiation has been investigated by crowdsourcing the analysis of digitalized infected thin blood smears by non-expert observers using a mobile app. METHODS: An on-line videogame in which players learned how to differentiate the young trophozoite stage of the five Plasmodium species has been designed. Images were digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Images from infected red blood cells were cropped and puzzled into an on-line game. During the game, players had to decide the malaria species (Plasmodium falciparum, Plasmodium malariae, Plasmodium vivax, Plasmodium ovale, Plasmodium knowlesi) of the infected cells that were shown in the screen. After 2 months, each player's decisions were analysed individually and collectively. RESULTS: On-line volunteers playing the game made more than 500,000 assessments for species differentiation. Statistically, when the choice of several players was combined (n > 25), they were able to significantly discriminate Plasmodium species, reaching a level of accuracy of 99% for all species combinations, except for P. knowlesi (80%). Non-expert decisions on which Plasmodium species was shown in the screen were made in less than 3 s. CONCLUSION: These findings show that it is possible to train malaria-naïve non-experts to identify and differentiate malaria species in digitalized thin blood samples. Although the accuracy of a single player is not perfect, the combination of the responses of multiple casual gamers can achieve an accuracy that is within the range of the diagnostic accuracy made by a trained microscopist.


Assuntos
Crowdsourcing/estatística & dados numéricos , Malária/classificação , Sistemas On-Line/estatística & dados numéricos , Plasmodium/classificação , Jogos de Vídeo/estatística & dados numéricos , Especificidade da Espécie , Trofozoítos/classificação
3.
PLoS Negl Trop Dis ; 18(4): e0012117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630833

RESUMO

Filariasis, a neglected tropical disease caused by roundworms, is a significant public health concern in many tropical countries. Microscopic examination of blood samples can detect and differentiate parasite species, but it is time consuming and requires expert microscopists, a resource that is not always available. In this context, artificial intelligence (AI) can assist in the diagnosis of this disease by automatically detecting and differentiating microfilariae. In line with the target product profile for lymphatic filariasis as defined by the World Health Organization, we developed an edge AI system running on a smartphone whose camera is aligned with the ocular of an optical microscope that detects and differentiates filarias species in real time without the internet connection. Our object detection algorithm that uses the Single-Shot Detection (SSD) MobileNet V2 detection model was developed with 115 cases, 85 cases with 1903 fields of view and 3342 labels for model training, and 30 cases with 484 fields of view and 873 labels for model validation before clinical validation, is able to detect microfilariae at 10x magnification and distinguishes four species of them at 40x magnification: Loa loa, Mansonella perstans, Wuchereria bancrofti, and Brugia malayi. We validated our augmented microscopy system in the clinical environment by replicating the diagnostic workflow encompassed examinations at 10x and 40x with the assistance of the AI models analyzing 18 samples with the AI running on a middle range smartphone. It achieved an overall precision of 94.14%, recall of 91.90% and F1 score of 93.01% for the screening algorithm and 95.46%, 97.81% and 96.62% for the species differentiation algorithm respectively. This innovative solution has the potential to support filariasis diagnosis and monitoring, particularly in resource-limited settings where access to expert technicians and laboratory equipment is scarce.


Assuntos
Inteligência Artificial , Microscopia , Microscopia/métodos , Humanos , Animais , Filariose/diagnóstico , Filariose/parasitologia , Microfilárias/isolamento & purificação , Algoritmos , Smartphone , Filariose Linfática/diagnóstico , Filariose Linfática/parasitologia
4.
Am J Trop Med Hyg ; 109(5): 1192-1198, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918001

RESUMO

Low-income countries carry approximately 90% of the global burden of visual impairment, and up to 80% of this could be prevented or cured. However, there are only a few studies on the prevalence of retinal disease in these countries. Easier access to retinal information would allow differential diagnosis and promote strategies to improve eye health, which are currently scarce. This pilot study aims to evaluate the functionality and usability of a tele-retinography system for the detection of retinal pathology, based on a low-cost portable retinal scanner, manufactured with 3D printing and controlled by a mobile phone with an application designed ad hoc. The study was conducted at the Manhiça Rural Hospital in Mozambique. General practitioners, with no specific knowledge of ophthalmology or previous use of retinography, performed digital retinographies on 104 hospitalized patients. The retinographies were acquired in video format, uploaded to a web platform, and reviewed centrally by two ophthalmologists, analyzing the image quality and the presence of retinal lesions. In our sample there was a high proportion of exudates and hemorrhages-8% and 4%, respectively. In addition, the presence of lesions was studied in patients with known underlying risk factors for retinal disease, such as HIV, diabetes, and/or hypertension. Our tele-retinography system based on a smartphone coupled with a simple and low-cost 3D printed device is easy to use by healthcare personnel without specialized ophthalmological knowledge and could be applied for the screening and initial diagnosis of retinal pathology.


Assuntos
Doenças Retinianas , Smartphone , Humanos , Moçambique/epidemiologia , Projetos Piloto , Programas de Rastreamento/métodos , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/epidemiologia , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa