Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 41(1): 93-106, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21211726

RESUMO

Protein quality control (PQC) degradation systems protect the cell from the toxic accumulation of misfolded proteins. Because any protein can become misfolded, these systems must be able to distinguish abnormal proteins from normal ones, yet be capable of recognizing the wide variety of distinctly shaped misfolded proteins they are likely to encounter. How individual PQC degradation systems accomplish this remains an open question. Here we show that the yeast nuclear PQC ubiquitin ligase San1 directly recognizes its misfolded substrates via intrinsically disordered N- and C-terminal domains. These disordered domains are punctuated with small segments of order and high sequence conservation that serve as substrate-recognition sites San1 uses to target its different substrates. We propose that these substrate-recognition sites, interspersed among flexible, disordered regions, provide San1 an inherent plasticity which allows it to bind its many, differently shaped misfolded substrates.


Assuntos
Dobramento de Proteína , Complexos Ubiquitina-Proteína Ligase/fisiologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Complexos Ubiquitina-Proteína Ligase/química , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
2.
Biol Psychiatry ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029776

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, following Alzheimer's. It is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD; however, the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. METHODS: Here, we used 2-dimensional cultures of human pluripotent stem cell-derived microglia and transplantation of these cells into the mouse brain to assess the cell autonomous effects of the A53T mutation on human microglia. RESULTS: We found that A53T mutant human microglia had an intrinsically increased propensity toward proinflammatory activation upon inflammatory stimulus. Additionally, transplanted A53T mutant microglia showed a strong decrease in catalase expression in noninflammatory conditions and increased oxidative stress. CONCLUSIONS: Our results indicate that A53T mutant human microglia display cell autonomous phenotypes that may worsen neuronal damage in early-onset PD.

3.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693409

RESUMO

Parkinson's disease (PD) is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD, however the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T-mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. Here, we used 2-dimensional cultures of human iPSC-derived microglia and transplantation of these cells into the mouse brain to assess the effects of the A53T mutation on human microglia. We found that A53T-mutant human microglia had an intrinsically increased propensity towards pro-inflammatory activation upon inflammatory stimulus. Additionally, A53T mutant microglia showed a strong decrease in catalase expression in non-inflammatory conditions, and increased oxidative stress. Our results indicate that A53T mutant human microglia display cell-autonomous phenotypes that may worsen neuronal damage in early-onset PD.

4.
Biol Psychiatry ; 93(1): 71-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372569

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS: To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS: The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS: This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Encéfalo/metabolismo , Camundongos Knockout
5.
Cell Stem Cell ; 29(5): 795-809.e11, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35452598

RESUMO

To understand the mechanisms regulating the in vitro maturation of hPSC-derived hepatocytes, we developed a 3D differentiation system and compared gene regulatory elements in human primary hepatocytes with those in hPSC-hepatocytes that were differentiated in 2D or 3D conditions by RNA-seq, ATAC-seq, and H3K27Ac ChIP-seq. Regulome comparisons showed a reduced enrichment of thyroid receptor THRB motifs in accessible chromatin and active enhancers without a reduced transcription of THRB. The addition of thyroid hormone T3 increased the binding of THRB to the CYP3A4 proximal enhancer, restored the super-enhancer status and gene expression of NFIC, and reduced the expression of AFP. The resultant hPSC-hepatocytes showed gene expression, epigenetic status, and super-enhancer landscape closer to primary hepatocytes and activated regulatory regions including non-coding SNPs associated with liver-related diseases. Transplanting the hPSC-hepatocytes resulted in the engraftment of human hepatocytes into the mouse liver without disrupting normal liver histology. This work implicates the environmental factor-nuclear receptor axis in regulating the maturation of hPSC-hepatocytes.


Assuntos
Cromatina , Hepatócitos , Animais , Diferenciação Celular , Cromatina/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequências Reguladoras de Ácido Nucleico
6.
PLoS Genet ; 3(12): e219, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18069898

RESUMO

The cyclin-dependent kinase inhibitor p27(KIP1) is a tumor suppressor gene in mice, and loss of p27 protein is a negative prognostic indicator in human cancers. Unlike other tumor suppressors, the p27 gene is rarely mutated in tumors. Therefore misregulation of p27, rather than loss of the gene, is responsible for tumor-associated decreases in p27 protein levels. We performed a functional genomic screen in p27(+/-) mice to identify genes that regulate p27 during lymphomagenesis. This study demonstrated that decreased p27 expression in tumors resulted from altered transcription of the p27 gene, and the retroviral tagging strategy enabled us to pinpoint relevant transcription factors. inhibitor of DNA binding 3 (Id3) was isolated and validated as a transcriptional repressor of p27. We further demonstrated that p27 was a downstream target of Id3 in src-family kinase Lck-driven thymic lymphomagenesis and that p27 was an essential regulator of Lck-dependent thymic maturation during normal T-cell development. Thus, we have identified and characterized transcriptional repression of p27 by Id3 as a new mechanism decreasing p27 protein in tumors.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , Linfoma/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfoma/metabolismo , Linfoma/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Vírus da Leucemia Murina de Moloney/genética , Vírus da Leucemia Murina de Moloney/patogenicidade , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA Interferente Pequeno/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcrição Gênica
7.
Curr Biol ; 13(23): 2025-36, 2003 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-14653991

RESUMO

BACKGROUND: Sister chromatid cohesion is needed for proper alignment and segregation of chromosomes during cell division. Chromatids are linked by the multiprotein cohesin complex, which binds to DNA during G(1) and then establishes cohesion during S phase DNA replication. However, many aspects of the mechanisms that establish and maintain cohesion during mitosis remain unclear. RESULTS: We found that mutations in two evolutionarily conserved Drosophila genes, san (separation anxiety) and deco (Drosophila eco1), disrupt centromeric sister chromatid cohesion very early in division. This failure of sister chromatid cohesion does not require separase and is correlated with a failure of the cohesin component Scc1 to accumulate in centromeric regions. It thus appears that these mutations interfere with the establishment of centromeric sister chromatid cohesion. Secondary consequences of these mutations include activation of the spindle checkpoint, causing metaphase delay or arrest. Some cells eventually escape the block but incur many errors in anaphase chromosome segregation. Both san and deco are predicted to encode acetyltransferases, which transfer acetyl groups either to internal lysine residues or to the N terminus of other proteins. The San protein is itself acetylated, and it associates with the Nat1 and Ard1 subunits of the NatA acetyltransferase. CONCLUSIONS: At least two diverse acetyltransferases play vital roles in regulating sister chromatid cohesion during Drosophila mitosis.


Assuntos
Acetiltransferases/genética , Cromátides/metabolismo , Proteínas de Drosophila/genética , Drosophila/fisiologia , Mitose/fisiologia , Acetiltransferases/metabolismo , Animais , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Cromatografia de Afinidade , Proteínas Cromossômicas não Histona , Drosophila/genética , Drosophila/metabolismo , Microscopia de Fluorescência , Mutação/fisiologia , Proteínas Nucleares , Fosfoproteínas , Proteínas de Saccharomyces cerevisiae , Fuso Acromático/fisiologia
9.
Proc Natl Acad Sci U S A ; 103(38): 14009-14, 2006 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-16966613

RESUMO

Decreased expression of the CDK inhibitor p27kip1 in human tumors directly correlates with increased resistance to chemotherapies, increased rates of metastasis, and an overall increased rate of patient mortality. It is thought that decreased p27 expression in tumors is caused by increased proteasomal turnover, in particular activation of the pathway governed by the SCFskp2 E3 ubiquitin protein ligase. We have directly tested the importance of the SCFskp-mediated degradation of p27 in tumorigenesis by analyzing the tumor susceptibility of mice that express a form of p27 that cannot be ubiquitinated and degraded by this pathway (p27T187A). In mouse models of both lung and colon cancer down-regulation of p27 promotes tumorigenesis. However, we found that preventing p27 degradation by the SCFskp2 pathway had no impact on tumor incidence or overall survival in either tumor model. Our study unveiled a previously unrecognized role for the control of p27 mRNA abundance in the development of non-small cell lung cancers. In the colon cancer model, the frequency of intestinal adenomas was similarly unaffected by the p27T187A mutation, but, unexpectedly, we found that it inhibited progression of intestinal adenomas to carcinomas. These studies may guide the choice of clinical settings in which pharmacologic inhibitors of the Skp2 pathway might be of therapeutic value.


Assuntos
Neoplasias do Colo/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/fisiologia , Animais , Transformação Celular Neoplásica , Neoplasias do Colo/patologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Modelos Animais de Doenças , Progressão da Doença , Genes ras , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Taxa de Sobrevida , Ubiquitina/metabolismo
10.
Development ; 129(20): 4661-75, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12361959

RESUMO

Previous genetic studies indicated intersex (ix) functions only in females and that it acts near the end of the sex determination hierarchy to control somatic sexual differentiation in Drosophila melanogaster. We have cloned ix and characterized its function genetically, molecularly and biochemically. The ix pre-mRNA is not spliced, and ix mRNA is produced in both sexes. The ix gene encodes a 188 amino acid protein, which has a sequence similar to mammalian proteins thought to function as transcriptional activators, and a Caenorhabditis elegans protein that is thought to function as a transcription factor. Bringing together the facts that (1) the ix phenotype is female-specific and (2) functions at the end of the sex determination hierarchy, yet (3) is expressed sex non-specifically and appears likely to encode a transcription factor with no known DNA-binding domain, leads to the inference that ix may require the female-specific protein product of the doublesex (dsx) gene in order to function. Consistent with this inference, we find that for all sexually dimorphic cuticular structures examined, ix and dsx are dependent on each other to promote female differentiation. This dependent relationship also holds for the only known direct target of dsx, the Yolk protein (Yp) genes. Using yeast 2-hybrid assay, immunoprecipitation of recombinant tagged IX and DSX proteins from Drosophila S2 cell extracts, and gel shifts with the tagged IX and DSX(F) proteins, we demonstrate that IX interacts with DSX(F), but not DSX(M). Taken together, the above findings strongly suggest that IX and DSX(F) function in a complex, in which IX acts as a transcriptional co-factor for the DNA-binding DSX(F).


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vagina/crescimento & desenvolvimento , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Dados de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , Diferenciação Sexual/genética , Vitelogeninas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa