Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 146303, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640372

RESUMO

We measure the thermal conductivity of solid and molten tungsten using steady state temperature differential radiometry. We demonstrate that the thermal conductivity can be well described by application of Wiedemann-Franz law to electrical resistivity data, thus suggesting the validity of Wiedemann-Franz law to capture the electronic thermal conductivity of metals in their molten phase. We further support this conclusion using ab initio molecular dynamics simulations with a machine-learned potential. Our results show that at these high temperatures, the vibrational contribution to thermal conductivity is negligible compared to the electronic component.

2.
J Am Chem Soc ; 144(8): 3603-3613, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179895

RESUMO

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal-organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules' effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species.

3.
Langmuir ; 35(6): 2106-2114, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30624942

RESUMO

Understanding the effects and limitations of solid/liquid interfaces on energy transport is crucial to applications ranging from nanoscale thermal engineering to chemical synthesis. Until now, the majority of experimental evidence regarding solid/liquid interactions has been limited to macroscale observations and experiments. The lack of experimental works exploring nanoscale solid/liquid interactions has been accentuated as the body of knowledge from theory and simulations at these scales has exploded in recent years. In this study, we expand on current nanoscale thermal measurement techniques in order to more fully understand solid/liquid interfacial energy transport. We use thermal ablation threshold measurements on thick Au films in various liquids as a metric to describe thermal transport at the Au/liquid interface. Furthermore, using ultrafast pump-probe experiments, we gain insight into this transport through picosecond ultrasonic coupling at solid/liquid interfaces with known macroscopic observations. We find significant variations in both the ablation threshold and the damping of the acoustic modes within the Au films depending on nanoscopic interactions at the solid/liquid interface rather than typical macroscale metrics such as acoustic mismatch, measured contact angle, and work of adhesion.

4.
Nano Lett ; 18(12): 7469-7477, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30412411

RESUMO

We present experimental measurements of the thermal boundary conductance (TBC) from 78-500 K across isolated heteroepitaxially grown ZnO films on GaN substrates. This data provides an assessment of the underlying assumptions driving phonon gas-based models, such as the diffuse mismatch model (DMM), and atomistic Green's function (AGF) formalisms used to predict TBC. Our measurements, when compared to previous experimental data, suggest that TBC can be influenced by long wavelength, zone center modes in a material on one side of the interface as opposed to the '"vibrational mismatch"' concept assumed in the DMM; this disagreement is pronounced at high temperatures. At room temperature, we measure the ZnO/GaN TBC as 490[+150,-110] MW m-2 K-1. The disagreement among the DMM and AGF, and the experimental data at elevated temperatures, suggests a non-negligible contribution from other types of modes that are not accounted for in the fundamental assumptions of these harmonic based formalisms, which may rely on anharmonicity. Given the high quality of these ZnO/GaN interfaces, these results provide an invaluable, critical, and quantitative assessment of the accuracy of assumptions in the current state of the art computational approaches used to predict phonon TBC across interfaces.

6.
ACS Appl Electron Mater ; 6(7): 5173-5182, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39070087

RESUMO

Post deposition annealing of molecular layer-deposited (MLD) hafnicone films was examined and compared to that of hafnium oxide atomic layer-deposited (ALD) films. Hafnicone films were deposited using tetrakis(dimethylamido)hafnium (TDMAH), and ethylene glycol and hafnia films were deposited using TDMAH and water at 120 °C. The changes in the properties of the as-deposited hafnicone films with annealing were probed by various techniques and then compared to the as-deposited and annealed ALD hafnia films. In situ X-ray reflectivity indicated a 70% decrease in thickness and ∼100% increase in density upon heating to 400 °C yet the density remained lower than that of hafnia control samples. The largest decreases in thickness of the hafnicone films were observed from 150 to 350 °C. In situ X-ray diffraction indicated an increase in the temperature required for crystallization in the hafnicone films (600 °C) relative to the hafnia films (350 °C). The changes in chemistry of the hafnicone films annealed with and without UV exposure were probed using Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy with no significant differences attributed to the UV exposure. The hafnicone films exhibited lower dielectric constants than hafnia control samples over the entire temperature range examined. The CF4/O2 etch rate of the hafnicone films was comparable to the etch rate of hafnia films after annealing at 350 °C. The thermal conductivity of the hafnicone films initially decreased with thermal processing (up to 250 °C) and then increased (350 °C), likely due to porosity generation and subsequent densification, respectively. This work demonstrates that annealing MLD films is a promising strategy for generating thin films with a low density and relative permittivity.

7.
Nat Commun ; 12(1): 2817, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990553

RESUMO

Amorphous chalcogenide alloys are key materials for data storage and energy scavenging applications due to their large non-linearities in optical and electrical properties as well as low vibrational thermal conductivities. Here, we report on a mechanism to suppress the thermal transport in a representative amorphous chalcogenide system, silicon telluride (SiTe), by nearly an order of magnitude via systematically tailoring the cross-linking network among the atoms. As such, we experimentally demonstrate that in fully dense amorphous SiTe the thermal conductivity can be reduced to as low as 0.10 ± 0.01 W m-1 K-1 for high tellurium content with a density nearly twice that of amorphous silicon. Using ab-initio simulations integrated with lattice dynamics, we attribute the ultralow thermal conductivity of SiTe to the suppressed contribution of extended modes of vibration, namely propagons and diffusons. This leads to a large shift in the mobility edge - a factor of five - towards lower frequency and localization of nearly 42% of the modes. This localization is the result of reductions in coordination number and a transition from over-constrained to under-constrained atomic network.

8.
ACS Appl Mater Interfaces ; 13(10): 12541-12549, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33663216

RESUMO

We experimentally show that the thermal conductance across confined solid-solution crystalline thin films between parent materials does not necessarily lead to an increase in thermal resistances across the thin-film geometries with increasing film thicknesses, which is counterintuitive to the notion that adding a material serves to increase the total thermal resistance. Confined thin epitaxial Ca0.5Sr0.5TiO3 solid-solution films with systematically varying thicknesses in between two parent perovskite materials of calcium titanate and (001)-oriented strontium titanate are grown, and thermoreflectance techniques are used to accurately measure the thermal boundary conductance across the confined solid-solution films, showing that the thermal resistance does not substantially increase with the addition of solid-solution films with increasing thicknesses from ∼1 to ∼10 nm. Contrary to the macroscopic understanding of thermal transport where adding more material along the heat propagation direction leads to larger thermal resistances, our results potentially offer experimental support to the computationally predicted concept of vibrational matching across interfaces. This concept is based on the fact that a better match in the available heat-carrying vibrations due to an interfacial layer can lead to lower thermal boundary resistances, thus leading to an enhancement in thermal boundary conductance across interfaces driven by the addition of a thin "vibrational bridge" layer between two solids.

9.
Nat Commun ; 12(1): 774, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536411

RESUMO

Phase change memory (PCM) is a rapidly growing technology that not only offers advancements in storage-class memories but also enables in-memory data processing to overcome the von Neumann bottleneck. In PCMs, data storage is driven by thermal excitation. However, there is limited research regarding PCM thermal properties at length scales close to the memory cell dimensions. Our work presents a new paradigm to manage thermal transport in memory cells by manipulating the interfacial thermal resistance between the phase change unit and the electrodes without incorporating additional insulating layers. Experimental measurements show a substantial change in interfacial thermal resistance as GST transitions from cubic to hexagonal crystal structure, resulting in a factor of 4 reduction in the effective thermal conductivity. Simulations reveal that interfacial resistance between PCM and its adjacent layer can reduce the reset current for 20 and 120 nm diameter devices by up to ~ 40% and ~ 50%, respectively. These thermal insights present a new opportunity to reduce power and operating currents in PCMs.

10.
Rev Sci Instrum ; 92(6): 064906, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243549

RESUMO

Measuring the thermal conductivity of sub-surface buried substrates is of significant practical interests. However, this remains challenging with traditional pump-probe spectroscopies due to their limited thermal penetration depths. Here, we experimentally and numerically investigate the TPD of the recently developed optical pump-probe technique steady-state thermoreflectance (SSTR) and explore its capability for measuring the thermal properties of buried substrates. The conventional definition of the TPD (i.e., the depth at which temperature drops to 1/e value of the maximum surface temperature) does not truly represent the upper limit of how far beneath the surface SSTR can probe. For estimating the uncertainty of SSTR measurements of a buried substrate a priori, sensitivity calculations provide the best means. Thus, detailed sensitivity calculations are provided to guide future measurements. Due to the steady-state nature of SSTR, it can measure the thermal conductivity of buried substrates that are traditionally challenging by transient pump-probe techniques, exemplified by measuring three control samples. We also discuss the required criteria for SSTR to isolate the thermal properties of a buried film. Our study establishes SSTR as a suitable technique for thermal characterizations of sub-surface buried substrates in typical device geometries.

11.
ACS Nano ; 15(6): 9588-9599, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33908771

RESUMO

High thermal conductivity materials show promise for thermal mitigation and heat removal in devices. However, shrinking the length scales of these materials often leads to significant reductions in thermal conductivities, thus invalidating their applicability to functional devices. In this work, we report on high in-plane thermal conductivities of 3.05, 3.75, and 6 µm thick aluminum nitride (AlN) films measured via steady-state thermoreflectance. At room temperature, the AlN films possess an in-plane thermal conductivity of ∼260 ± 40 W m-1 K-1, one of the highest reported to date for any thin film material of equivalent thickness. At low temperatures, the in-plane thermal conductivities of the AlN films surpass even those of diamond thin films. Phonon-phonon scattering drives the in-plane thermal transport of these AlN thin films, leading to an increase in thermal conductivity as temperature decreases. This is opposite of what is observed in traditional high thermal conductivity thin films, where boundaries and defects that arise from film growth cause a thermal conductivity reduction with decreasing temperature. This study provides insight into the interplay among boundary, defect, and phonon-phonon scattering that drives the high in-plane thermal conductivity of the AlN thin films and demonstrates that these AlN films are promising materials for heat spreaders in electronic devices.

12.
ACS Appl Mater Interfaces ; 12(26): 29443-29450, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32491824

RESUMO

Aluminum nitride (AlN) has garnered much attention due to its intrinsically high thermal conductivity. However, engineering thin films of AlN with these high thermal conductivities can be challenging due to vacancies and defects that can form during the synthesis. In this work, we report on the cross-plane thermal conductivity of ultra-high-purity single-crystal AlN films with different thicknesses (∼3-22 µm) via time-domain thermoreflectance (TDTR) and steady-state thermoreflectance (SSTR) from 80 to 500 K. At room temperature, we report a thermal conductivity of ∼320 ± 42 W m-1 K-1, surpassing the values of prior measurements on AlN thin films and one of the highest cross-plane thermal conductivities of any material for films with equivalent thicknesses, surpassed only by diamond. By conducting first-principles calculations, we show that the thermal conductivity measurements on our thin films in the 250-500 K temperature range agree well with the predicted values for the bulk thermal conductivity of pure single-crystal AlN. Thus, our results demonstrate the viability of high-quality AlN films as promising candidates for the high-thermal-conductivity layers in high-power microelectronic devices. Our results also provide insight into the intrinsic thermal conductivity of thin films and the nature of phonon-boundary scattering in single-crystal epitaxially grown AlN thin films. The measured thermal conductivities in high-quality AlN thin films are found to be constant and similar to bulk AlN, regardless of the thermal penetration depth, film thickness, or laser spot size, even when these characteristic length scales are less than the mean free paths of a considerable portion of thermal phonons. Collectively, our data suggest that the intrinsic thermal conductivity of thin films with thicknesses less than the thermal phonon mean free paths is the same as bulk so long as the thermal conductivity of the film is sampled independent of the film/substrate interface.

13.
Rev Sci Instrum ; 90(2): 024905, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831683

RESUMO

We demonstrate a steady-state thermoreflectance-based optical pump-probe technique to measure the thermal conductivity of materials using a continuous wave laser heat source. The technique works in principle by inducing a steady-state temperature rise in a material via long enough exposure to heating from a pump laser. A probe beam is then used to detect the resulting change in reflectance, which is proportional to the change in temperature at the sample surface. Increasing the power of the pump beam to induce larger temperature rises, Fourier's law is used to determine the thermal conductivity. We show that this technique is capable of measuring the thermal conductivity of a wide array of materials having thermal conductivities ranging from 1 to >2000 W m-1 K-1, in excellent agreement with literature values.

14.
Nanoscale ; 10(47): 22166-22172, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30475362

RESUMO

Carbon based materials have attracted much attention as building blocks in technologically relevant nanocomposites due to their unique chemical and physical properties. Here, we propose a new class of hierarchical carbon based nano-truss structures consisting of fullerene joints attached with carbon nanotubes as the truss forming a three-dimensional network. Atomistic molecular dynamics simulations allow us to systematically demonstrate the ability to simultaneously control the mechanical and thermal properties of these structures, elucidating their unique physical properties. Specifically, we perform uniaxial tensile and compressive loading to show that by controlling the length of the carbon nanotube trusses, the mechanical properties can be tuned over a large range. Furthermore, we utilize the Green-Kubo method under the equilibrium molecular dynamics simulations framework to show that the thermal conductivities of these structures can be manipulated by varying the densities of the overall structures. This work provides a computational framework guiding future research on the manipulation of the fundamental physical properties in these organic-based hierarchical structures composed of carbon nanotubes and fullerenes as building blocks.

15.
ACS Appl Mater Interfaces ; 10(30): 25493-25501, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29978704

RESUMO

Ferroelastic domain walls in ferroelectric materials possess two properties that are known to affect phonon transport: a change in crystallographic orientation and a lattice strain. Changing populations and spacing of nanoscale-spaced ferroelastic domain walls lead to the manipulation of phonon-scattering rates, enabling the control of thermal conduction at ambient temperatures. In the present work, lead zirconate titanate (PZT) thin-film membrane structures were fabricated to reduce mechanical clamping to the substrate and enable a subsequent increase in the ferroelastic domain wall mobility. Under application of an electric field, the thermal conductivity of PZT increases abruptly at ∼100 kV/cm by ∼13% owing to a reduction in the number of phonon-scattering domain walls in the thermal conduction path. The thermal conductivity modulation is rapid, repeatable, and discrete, resulting in a bistable state or a "digital" modulation scheme. The modulation of thermal conductivity due to changes in domain wall configuration is supported by polarization-field, mechanical stiffness, and in situ microdiffraction experiments. This work opens a path toward a new means to control phonons and phonon-mediated energy in a digital manner at room temperature using only an electric field.

16.
Adv Mater ; 30(44): e1804097, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30222218

RESUMO

The role of interfacial nonidealities and disorder on thermal transport across interfaces is traditionally assumed to add resistance to heat transfer, decreasing the thermal boundary conductance (TBC). However, recent computational studies have suggested that interfacial defects can enhance this thermal boundary conductance through the emergence of unique vibrational modes intrinsic to the material interface and defect atoms, a finding that contradicts traditional theory and conventional understanding. By manipulating the local heat flux of atomic vibrations that comprise these interfacial modes, in principle, the TBC can be increased. In this work, experimental evidence is provided that interfacial defects can enhance the TBC across interfaces through the emergence of unique high-frequency vibrational modes that arise from atomic mass defects at the interface with relatively small masses. Ultrahigh TBC is demonstrated at amorphous SiOC:H/SiC:H interfaces, approaching 1 GW m-2 K-1 and are further increased through the introduction of nitrogen defects. The fact that disordered interfaces can exhibit such high conductances, which can be further increased with additional defects, offers a unique direction to manipulate heat transfer across materials with high densities of interfaces by controlling and enhancing interfacial thermal transport.

17.
Rev Sci Instrum ; 88(5): 054903, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571466

RESUMO

Damage in the form of dewetting and delamination of thin films is a major concern in applications requiring micro- or nano-fabrication. In non-contact nanoscale characterization, optical interrogation must be kept to energies below damage thresholds in order to conduct measurements such as pump-probe spectroscopy. In this study, we show that the thermoreflectance of thin films can indicate the degree of film damage induced by a modulated optical heating source. By adjusting the absorbed power of the pump heating event, we identify the characteristics of the change in the thermoreflectance signal when leading up to and exceeding the damage threshold of gold films of varying thicknesses on glass substrates.

18.
J R Soc Interface ; 9(66): 34-42, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21613287

RESUMO

Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales. This resistance is shown to be around the upper limit that allows cracking the shell via internal turgor pressure (i.e. germination). Thus, the seed appears to strike an exquisitely delicate adaptive balance between multiple selection pressures.


Assuntos
Annonaceae/fisiologia , Evolução Biológica , Sementes/fisiologia , Animais , Annonaceae/anatomia & histologia , Annonaceae/embriologia , Fenômenos Biomecânicos , Força de Mordida , Besouros/fisiologia , Comportamento Alimentar , Germinação , Pongo/fisiologia , Comportamento Predatório , Pressão , Sementes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa