Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674073

RESUMO

Prostate cancer (PCA) is the second most common cancer diagnosis in men and the fifth leading cause of death worldwide. The conventional treatments available are beneficial to only a few patients and, in those, some present adverse side effects that eventually affect the quality of life of most patients. Thus, there is an urgent need for effective, less invasive and targeted specific treatments for PCA. Photothermal therapy (PTT) is a minimally invasive therapy that provides a localized effect for tumour cell ablation by activating photothermal agents (PTA) that mediate the conversion of the light beam's energy into heat at the site. As tumours are unable to easily dissipate heat, they become more susceptible to temperature increases. In the PTT field, gold nanoparticles (AuNPs) have been attracting interest as PTA. The aim of this study was to formulate AuNPs capable of remaining retained in the tumour and subsequently generating heat at the tumour site. AuNPs were synthesized and characterized in terms of size, polydispersity index (PdI), zeta potential (ZP), morphology and the surface plasmon resonance (SPR). The safety of AuNPs and their efficacy were assessed using in vitro models. A preliminary in vivo safety assessment of AuNPs with a mean size lower than 200 nm was confirmed. The morphology was spherical-like and the SPR band showed good absorbance at the laser wavelength. Without laser, AuNPs proved to be safe both in vitro (>70% viability) and in vivo. In addition, with laser irradiation, they proved to be relatively effective in PCA cells. Overall, the formulation appears to be promising for use in PTT.


Assuntos
Ouro , Nanopartículas Metálicas , Neoplasias da Próstata , Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Masculino , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Humanos , Animais , Terapia Fototérmica/métodos , Linhagem Celular Tumoral , Camundongos , Ressonância de Plasmônio de Superfície , Lasers
2.
Inorg Chem ; 62(29): 11466-11486, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37441730

RESUMO

We report the synthesis and characterization of three novel Schiff bases (L1-L3) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with amines containing morpholine or piperidine moieties. These were reacted with CuCl2 and ZnCl2 yielding six new coordination compounds, with the general formula ML2, where M = Cu(II) or Zn(II) and L = L1-L3, which were all characterized by analytical, spectroscopic (Fourier transform infrared (FTIR), UV-visible absorption, nuclear magnetic resonance (NMR), or electron paramagnetic resonance (EPR)), and mass spectrometric techniques, as well as by single-crystal X-ray diffraction. In the solid state, two Cu(II) complexes, with L1 and L2, are obtained as dinuclear compounds, with relatively short Cu-Cu distances (3.146 and 3.171 Å for Cu2(L1)4 and Cu2(L2)4, respectively). The free ligands show moderate lipophilicity, while their complexes are more lipophilic. The pKa values of L1-L3 and formation constants of the complex (for ML and ML2) species were determined by spectrophotometric titrations, with the Cu(II) complexes showing higher stability than the Zn(II) complexes. EPR indicated the presence of several species in solution as pH varied and binding modes were proposed. The binding of the complexes to bovine serum albumin (BSA) was evaluated by fluorescence and circular dichroism (CD) spectroscopies. All complexes bind BSA, and as demonstrated by CD, the process takes several hours to reach equilibrium. The antiproliferative activity was evaluated in malignant melanoma cells (A375) and in noncancerous keratinocytes (HaCaT). All complexes display significant cytotoxicity (IC50 < 10 µM) but modest selectivity. The complexes show higher activity than the free ligands, the Cu(II) complexes being more active than the Zn(II) complexes, and approximately twice more cytotoxic than cisplatin. A Guava ViaCount assay corroborated the antiproliferative activity.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Bases de Schiff/química , Ligantes , Oxiquinolina/farmacologia , Zinco/química , Cobre/farmacologia , Cobre/química
3.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674655

RESUMO

Mycobacterium tuberculosis is able to establish a chronic colonization of lung macrophages in a controlled replication manner, giving rise to a so-called latent infection. Conversely, when intracellular bacteria undergo actively uncontrolled replication rates, they provide the switch for the active infection called tuberculosis to occur. Our group found that the pathogen is able to manipulate the activity of endolysosomal enzymes, cathepsins, directly at the level of gene expression or indirectly by regulating their natural inhibitors, cystatins. To provide evidence for the crucial role of cathepsin manipulation for the success of tuberculosis bacilli in their intracellular survival, we used liposomal delivery of saquinavir. This protease inhibitor was previously found to be able to increase cathepsin proteolytic activity, overcoming the pathogen induced blockade. In this study, we demonstrate that incorporation in liposomes was able to increase the efficiency of saquinavir internalization in macrophages, reducing cytotoxicity at higher concentrations. Consequently, our results show a significant impact on the intracellular killing not only to reference and clinical strains susceptible to current antibiotic therapy but also to multidrug- and extensively drug-resistant (XDR) Mtb strains. Altogether, this indicates the manipulation of cathepsins as a fine-tuning strategy used by the pathogen to survive and replicate in host cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Catepsinas/metabolismo , Saquinavir/farmacologia , Saquinavir/metabolismo , Lipossomos/metabolismo , Macrófagos/metabolismo , Tuberculose/microbiologia , Interações Hospedeiro-Patógeno/fisiologia
4.
Mar Drugs ; 20(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36286431

RESUMO

Natural products, especially those derived from seaweeds, are starting to be seen as effective against various diseases, such as cardiovascular diseases (CVDs). This study aimed to design a novel oral formulation of bovine albumin serum nanoparticles (BSA NPs) loaded with an extract of Eisenia bicyclis and to validate its beneficial health effects, particularly targeting hypercholesterolemia and CVD prevention. Small and well-defined BSA NPs loaded with Eisenia bicyclis extract were successfully prepared exhibiting high encapsulation efficiency. Antioxidant activity and cholesterol biosynthesis enzyme 3-hydroxy-3 methylutaryl coenzyme A reductase (HMGR) inhibition, as well as reduction of cholesterol permeation in intestinal lining model cells, were assessed for the extract both in free and nanoformulated forms. The nanoformulation was more efficient than the free extract, particularly in terms of HMGR inhibition and cholesterol permeation reduction. In vitro cytotoxicity and in vivo assays in Wistar rats were performed to evaluate its safety and overall effects on metabolism. The results demonstrated that the Eisenia bicyclis extract and BSA NPs were not cytotoxic against human intestinal Caco-2 and liver HepG2 cells and were also safe after oral administration in the rat model. In addition, an innovative approach was adopted to compare the metabolomic profile of the serum from the animals involved in the in vivo assay, which showed the extract and nanoformulation's impact on CVD-associated key metabolites. Altogether, these preliminary results revealed that the seaweed extract and the nanoformulation may constitute an alternative natural dosage form which is safe and simple to produce, capable of reducing cholesterol levels, and consequently helpful in preventing hypercholesterolemia, the main risk factor of CVDs.


Assuntos
Produtos Biológicos , Doenças Cardiovasculares , Hipercolesterolemia , Nanopartículas , Phaeophyceae , Alga Marinha , Bovinos , Humanos , Ratos , Animais , Soroalbumina Bovina , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Células CACO-2 , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Ratos Wistar , Phaeophyceae/metabolismo , Oxirredutases/metabolismo , Produtos Biológicos/metabolismo , Coenzima A/metabolismo , Portadores de Fármacos
5.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743176

RESUMO

Colorectal cancer is the second leading cause of cancer-related mortality. Many current therapies rely on chemotherapeutic agents with poor specificity for tumor cells. The clinical success of cisplatin has prompted the research and design of a huge number of metal-based complexes as potential chemotherapeutic agents. In this study, two zinc(II) complexes, [ZnL2] and [ZnL(AcO)], where AcO is acetate and L is an organic compound combining 8-hydroxyquinoline and a benzothiazole moiety, were developed and characterized. Analytical and spectroscopic studies, namely, NMR, FTIR, and UV-Vis allowed us to establish the complexes' structures, demonstrating the ligand-binding versatility: tetradentate in [ZnL(AcO)] and bidentate in [ZnL2]. Complexes were screened in vitro using murine and human colon cancer cells cultured in 2D and 3D settings. In 2D cells, the IC50 values were <22 µM, while in 3D settings, much higher concentrations were required. [ZnL(AcO)] displayed more suitable antiproliferative properties than [ZnL2] and was chosen for further studies. Moreover, based on the weak selectivity of the zinc-based complex towards cancer cell lines in comparison to the non-tumorigenic cell line, its incorporation in long-blood-circulating liposomes was performed, aiming to improve its targetability. The resultant optimized liposomal nanoformulation presented an I.E. of 76% with a mean size under 130 nm and a neutral surface charge and released the metal complex in a pH-dependent manner. The antiproliferative properties of [ZnL(AcO)] were maintained after liposomal incorporation. Preliminary safety assays were carried out through hemolytic activity that never surpassed 2% for the free and liposomal forms of [ZnL(AcO)]. Finally, in a syngeneic murine colon cancer mouse model, while free [ZnL(AcO)] was not able to impair tumor progression, the respective liposomal nanoformulation was able to reduce the relative tumor volume in the same manner as the positive control 5-fluorouracil but, most importantly, using a dosage that was 3-fold lower. Overall, our results show that liposomes were able to solve the solubility issues of the new metal-based complex and target it to tumor sites.


Assuntos
Antineoplásicos , Neoplasias do Colo , Complexos de Coordenação , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Lipossomos , Camundongos , Zinco/química
6.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077542

RESUMO

Pseudomonas aeruginosa is a Gram-negative opportunistic bacterium that presents resistance to several antibiotics, thus, representing a major threat to human and animal health. Phage-derived products, namely lysins, or peptidoglycan-hydrolyzing enzymes, can be an effective weapon against antibiotic-resistant bacteria. Whereas in Gram-positive bacteria, lysis from without is facilitated by the exposed peptidoglycan layer, this is not possible in the outer membrane-protected peptidoglycan of Gram-negative bacteria. Here, we suggest the encapsulation of lysins in liposomes as a delivery system against Gram-negative bacteria, using the model of P. aeruginosa. Bioinformatic analysis allowed for the identification of 38 distinct complete prophages within 66 P. aeruginosa genomes (16 of which newly sequenced) and led to the identification of 19 lysins of diverse sequence and function, 5 of which proceeded to wet lab analysis. The four purifiable lysins showed hydrolytic activity against Gram-positive bacterial lawns and, on zymogram assays, constituted of autoclaved P. aeruginosa cells. Additionally, lysins Pa7 and Pa119 combined with an outer membrane permeabilizer showed activity against P. aeruginosa cells. These two lysins were successfully encapsulated in DPPC:DOPE:CHEMS (molar ratio 4:4:2) liposomes with an average encapsulation efficiency of 33.33% and 32.30%, respectively. The application of the encapsulated lysins to the model P. aeruginosa led to a reduction in cell viability and resulted in cell lysis as observed in MTT cell viability assays and electron microscopy. In sum, we report here that prophages may be important sources of new enzybiotics, with prophage lysins showing high diversity and activity. In addition, these enzybiotics following their incorporation in liposomes were able to potentiate their antibacterial effect against the Gram-negative bacteria P. aeruginosa, used as the model.


Assuntos
Prófagos , Pseudomonas aeruginosa , Animais , Antibacterianos/farmacologia , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Humanos , Lipossomos , Peptidoglicano/metabolismo , Prófagos/metabolismo , Pseudomonas aeruginosa/metabolismo
7.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920964

RESUMO

Insulin is a peptide hormone with many physiological functions, besides its use in diabetes treatment. An important role of insulin is related to the wound healing process-however, insulin itself is too sensitive to the external environment requiring the protective of a nanocarrier. Polymer-based nanoparticles can protect, deliver, and retain the protein in the target area. This study aims to produce and characterize a topical treatment for wound healing consisting of insulin-loaded poly-DL-lactide/glycolide (PLGA) nanoparticles. Insulin-loaded nanoparticles present a mean size of approximately 500 nm and neutral surface charge. Spherical shaped nanoparticles are observed by scanning electron microscopy and confirmed by atomic force microscopy. SDS-PAGE and circular dichroism analysis demonstrated that insulin preserved its integrity and secondary structure after the encapsulation process. In vitro release studies suggested a controlled release profile. Safety of the formulation was confirmed using cell lines, and cell viability was concentration and time-dependent. Preliminary safety in vivo assays also revealed promising results.


Assuntos
Queimaduras/fisiopatologia , Composição de Medicamentos , Insulina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Regeneração , Pele/fisiopatologia , Administração Tópica , Animais , Sobrevivência Celular , Dicroísmo Circular , Liberação Controlada de Fármacos , Feminino , Células HaCaT , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Estabilidade Proteica , Eletricidade Estática , Fatores de Tempo
8.
Molecules ; 26(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918529

RESUMO

Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug's encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Farmacorresistência Bacteriana , Nanotecnologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Lipossomos
9.
Int J Mol Sci ; 21(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353068

RESUMO

Breast cancer is one of the most frequently diagnosed malignancies and common causes of cancer death in women. Recent studies suggest that environmental exposures to certain chemicals, such as 7,12-Dimethylbenzanthracene (DMBA), a chemical present in tobacco, may increase the risk of developing breast cancer later in life. The first-line treatments for breast cancer (surgery, chemotherapy or a combination of both) are generally invasive and frequently associated with severe side effects and high comorbidity. Consequently, novel approaches are strongly required to find more natural-like experimental models that better reflect the tumors' etiology, physiopathology and response to treatments, as well as to find more targeted, efficient and minimally invasive treatments. This study proposes the development and an in deep biological characterization of an experimental model using DMBA-tumor-induction in Sprague-Dawley female rats. Moreover, a photothermal therapy approach using a near-infrared laser coupled with gold nanoparticles was preliminarily assessed. The gold nanoparticles were functionalized with Epidermal Growth Factor, and their physicochemical properties and in vitro effects were characterized. DMBA proved to be a very good and selective inductor of breast cancer, with 100% incidence and inducing an average of 4.7 tumors per animal. Epigenetic analysis showed that tumors classified with worst prognosis were hypomethylated. The tumor-induced rats were then subjected to a preliminary treatment using functionalized gold nanoparticles and its activation by laser (650-900 nm). The treatment outcomes presented very promising alterations in terms of tumor histology, confirming the presence of necrosis in most of the cases. Although this study revealed encouraging results as a breast cancer therapy, it is important to define tumor eligibility and specific efficiency criteria to further assess its application in breast cancer treatment on other species.


Assuntos
5-Metilcitosina/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Hipertermia Induzida , Neoplasias Mamárias Experimentais/terapia , Nanopartículas Metálicas/administração & dosagem , Modelos Teóricos , Animais , Peso Corporal , Feminino , Ouro/química , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Nanopartículas Metálicas/química , Ratos , Ratos Sprague-Dawley
10.
Int J Mol Sci ; 21(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252345

RESUMO

Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.


Assuntos
Aquaporina 3/antagonistas & inibidores , Compostos de Tungstênio/farmacologia , Animais , Aquaporina 3/química , Aquaporina 3/genética , Aquaporina 3/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicerol/metabolismo , Humanos , Melanoma , Estrutura Molecular , Compostos de Tungstênio/química , Água/metabolismo
11.
Cytotherapy ; 19(3): 360-370, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28040463

RESUMO

BACKGROUND AIMS: The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX®. METHODS: Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. RESULTS: Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. DISCUSSION: This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products.


Assuntos
Criopreservação , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Neovascularização Fisiológica , Cordão Umbilical/citologia , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Congelamento/efeitos adversos , Humanos , Imunofenotipagem , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
12.
Mol Pharm ; 14(9): 2977-2990, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28809501

RESUMO

Solid lipid nanoparticles (SLN) containing rifabutin (RFB), with pulmonary administration purposes, were developed through a technique that avoids the use of organic solvents or sonication. To facilitate their pulmonary delivery, the RFB-loaded SLN were included in microspheres of appropriate size using suitable excipients (mannitol and trehalose) through a spray-drying technique. Confocal analysis microscopy showed that microspheres are spherical and that SLN are efficiently microencapsulated and homogeneously distributed throughout the microsphere matrices. The aerodynamic diameters observed an optimal distribution for reaching the alveolar region. The dry powder's performance during aerosolization and the in vitro drug deposition were tested using a twin-impinger approach, which confirmed that the microspheres can reach the deep lung. Isothermal titration calorimetry revealed that SLN have higher affinity for mannitol than for trehalose. Upon microsphere dissolution in aqueous media, SLN were readily recovered, maintaining their physicochemical properties. When these dry powders reach the deep lung, microspheres are expected to readily dissolve, delivering the SLN which, in turn, will release RFB. The in vivo biodistribution of microencapsulated RFB-SLN demonstrated that the antibiotic achieved the tested organs 15 and 30 min post pulmonary administration. Their antimycobacterial activity was also evaluated in a murine model of infection with a Mycobacterium tuberculosis strain H37Rv resulting in an enhancement of activity against M. tuberculosis infection compared to nontreated animals. These results suggest that RFB-SLN microencapsulation is a promising approach for the treatment of tuberculosis.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/metabolismo , Lipídeos/química , Pulmão/metabolismo , Nanopartículas/química , Animais , Antibacterianos/uso terapêutico , Composição de Medicamentos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Confocal , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Nanopartículas/administração & dosagem , Rifabutina/administração & dosagem , Rifabutina/metabolismo , Rifabutina/uso terapêutico
13.
Bioorg Med Chem ; 25(15): 3900-3910, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28602669

RESUMO

Metastatic melanoma still remains one the most difficult cancers to overcome. The aim of our research was the design of anti-tumour triazene compounds 3 for application to a melanoma-specific therapy. The strategy exploits the unique enzyme pathway of melanin biosynthesis for conversion of non-toxic prodrugs into toxic drugs in the melanoma cell. The compounds 3 were designed by coupling two active moieties, the alkylating triazenes and different tyrosinase substrates. All compounds 3 revealed to be chemically stable in isotonic phosphate buffer (PBS) at physiologic pH (t½≥48h), and most of them showed to be slowly hydrolysed in human plasma (1.5≤t½ (h)≤161). Compounds 3c-n revealed to be excellent tyrosinase substrates (0.74≤t½ (min)≤6) with the best tyrosinase substrate 3l releasing MMT 45s after tyrosinase activation. Structure-activity relationship studies allowed the identification of the better structural features for enzyme affinity. Furthermore, the derivatives 3l and 3m showed cell selectivity with significant cytotoxic effects (IC50 values of 46-65µM) against melanoma cell lines with tyrosinase overexpression MNT-1 and B16F10.


Assuntos
Antineoplásicos/farmacologia , Melanoma/patologia , Triazenos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Camundongos , Triazenos/química
14.
Nanomedicine ; 11(7): 1851-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169150

RESUMO

Treatment of intracellular infections such as those caused by Mycobacterium spp. and Leishmania spp. is often hampered by limited access of drugs to infected cells. This is the case of paromomycin (PRM), an antibiotic with broad spectrum in vitro activity against protozoa and mycobacteria. Association of chemotherapeutics to liposomes is a worthy strategy to circumvent poor drug accessibility. Six different PRM liposomal formulations were produced, physicochemically characterized and biologically evaluated in a macrophagic cell line confirming their adequacy for in vivo studies. Biodistribution profiles of PRM liposomes revealed preferential targeting of the antibiotic to the liver, spleen and lungs, relative to free PRM, which translated into an enhanced therapeutic effect in murine models infected with Mycobacterium avium and Leishmania infantum and an absence of toxic effects. Our findings demonstrate the advantages of associating PRM to liposomes indicating their potential as an alternative therapeutic strategy for mycobacterial and parasite infections. FROM THE CLINICAL EDITOR: Infections caused by intracellular organisms such as Mycobacterium and Leishmania remain a significant problem worldwide. Although effective drugs are available, their actions are limited by access into the intracellular compartment. In this article, the authors developed different liposomal formulations as drug carriers of paromomycin and investigated their efficacy in a mouse model. The positive should provide another treatment option for these organisms in the near future.


Assuntos
Doenças Transmissíveis/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Paromomicina/administração & dosagem , Animais , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Modelos Animais de Doenças , Portadores de Fármacos , Humanos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Lipídeos/administração & dosagem , Lipídeos/química , Lipossomos/administração & dosagem , Lipossomos/química , Camundongos , Mycobacterium/efeitos dos fármacos , Mycobacterium/patogenicidade , Paromomicina/química , Distribuição Tecidual
15.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38675432

RESUMO

Methicillin-resistant Staphylococcus aureus (M RSA) infections, in particular biofilm-organized bacteria, remain a clinical challenge and a serious health problem. Rifabutin (RFB), an antibiotic of the rifamycins class, has shown in previous work excellent anti-staphylococcal activity. Here, we proposed to load RFB in liposomes aiming to promote the accumulation of RFB at infected sites and consequently enhance the therapeutic potency. Two clinical isolates of MRSA, MRSA-C1 and MRSA-C2, were used to test the developed formulations, as well as the positive control, vancomycin (VCM). RFB in free and liposomal forms displayed high antibacterial activity, with similar potency between tested formulations. In MRSA-C1, minimal inhibitory concentrations (MIC) for Free RFB and liposomal RFB were 0.009 and 0.013 µg/mL, respectively. Minimum biofilm inhibitory concentrations able to inhibit 50% biofilm growth (MBIC50) for Free RFB and liposomal RFB against MRSA-C1 were 0.012 and 0.008 µg/mL, respectively. Confocal microscopy studies demonstrated the rapid internalization of unloaded and RFB-loaded liposomes in the bacterial biofilm matrix. In murine models of systemic MRSA-C1 infection, Balb/c mice were treated with RFB formulations and VCM at 20 and 40 mg/kg of body weight, respectively. The in vivo results demonstrated a significant reduction in bacterial burden and growth index in major organs of mice treated with RFB formulations, as compared to Control and VCM (positive control) groups. Furthermore, the VCM therapeutic dose was two fold higher than the one used for RFB formulations, reinforcing the therapeutic potency of the proposed strategy. In addition, RFB formulations were the only formulations associated with 100% survival. Globally, this study emphasizes the potential of RFB nanoformulations as an effective and safe approach against MRSA infections.

16.
Cell Death Discov ; 10(1): 261, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806468

RESUMO

Inducing necroptosis in cancer cells has emerged as an effective strategy to overcome drug resistance. However, while organic small molecules have been extensively studied for this purpose, metal-based compounds have received relatively little attention as triggers of necroptosis. The development of ruthenium (II) hybrid compounds, particularly those containing triazene (Ru-TRZ), highlights a novel avenue for modulating necroptotic cell death. Here we show that incorporating a methyltriazene moiety, a known alkylating warhead, confers superior mitochondrial-targeting properties and enhances cell death compared to amide-containing counterparts. Ru-hybrid TRZ2 exhibits also antitumor efficacy against in vivo drug-resistant cancer cells. Mechanistically, we demonstrate that Ru-TRZ hybrids induce apoptosis. In addition, by activating downstream RIPK3-driven cell death, TRZ2 proficiently restrains normal mitochondrial function and activity, leading to cancer cell necroptosis. Finally, TRZ2 synergizes anti-proliferative activity and cell death effects induced by conventional drugs. In conclusion, Ru-TRZ2 stands as a promising ruthenium-based chemotherapeutic agent inducing necroptosis in drug resistant cancer cells.

17.
Int J Pharm ; 651: 123758, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160991

RESUMO

Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.


Assuntos
Bacteriófagos , Prófagos , Animais , Humanos , Enterobacteriaceae , Lipossomos , Antibacterianos/farmacologia , Peptidoglicano , Endopeptidases/farmacologia , Bactérias
18.
Biomedicines ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830971

RESUMO

Nanomedicine, a promising area of medicine, employs nanosized tools for the diagnosis, prevention, and treatment of disease. Particularly, liposomes, lipid-based nanovesicles, are currently one of the most successful nanosystems, with extensive applications in the clinic and an increasing pipeline of products in preclinical and clinical development. These versatile nanotechnological tools are biocompatible and biodegradable, and can load a variety of molecules and, ultimately, improve the therapeutic performance of drugs while minimizing undesired side effects. In this review, we provide a brief description on liposomes' composition and classification and mainly focus on their clinical use in various areas, including disease management (e.g., cancer, fungal and bacterial infections, ocular pathologies), analgesia, vaccination, diagnostics, and immunosuppression in organ transplantation. Herein are described examples of current liposomal products already in the clinic, as well as the most recent clinical trials involving liposomes as effective and safe nanomedicine tools.

19.
Cancers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37174036

RESUMO

Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.

20.
Int J Biol Macromol ; 248: 125838, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37455007

RESUMO

Pulmonary delivery of drugs is potentially beneficial in the context of lung disease, maximising drug concentrations in the site of action. A recent work proposed spray-dried konjac glucomannan (KGM) microparticles as antitubercular drug (isoniazid and rifabutin) carriers to treat pulmonary tuberculosis. The present work explores in vitro and in vivo effects of these microparticles, focusing on the ability for macrophage uptake, the exhibited antibacterial activity and safety issues. Efficient uptake of KGM microparticles by macrophages was demonstrated in vitro, while the antitubercular activity of the model drugs against Mycobacterium bovis was not affected by microencapsulation in KGM microparticles. Despite the good indications provided by the developed system, KGM is not yet approved for pulmonary applications, which is a limiting characteristic. To reinforce the available data on the performance of the material, safety parameters were evaluated both in vitro and in vivo, showing promising results. No significant cell toxicity was observed at concentrations considered realistic for lung delivery approaches (up to 125 µg/mL) when lung epithelial cells and macrophages were exposed to KGM microparticles (both drug-loaded and unloaded). Finally, no signs of systemic or lung inflammatory response were detected in mice after receiving 10 administrations of unloaded KGM microparticles.


Assuntos
Antituberculosos , Portadores de Fármacos , Animais , Camundongos , Antituberculosos/farmacologia , Mananas/farmacologia , Rifabutina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa