RESUMO
Considerable evidence exists for local adaptation of critical thermal limits in ectotherms following adult temperature stress, but fewer studies have tested for local adaptation of sublethal heat stress effects across life-history stages. In organisms with complex life cycles, such as holometabolous insects, heat stress during juvenile stages may severely impact gametogenesis, having downstream consequences on reproductive performance that may be mediated by local adaptation, although this is rarely studied. Here, we tested how exposure to either benign or heat stress temperature during juvenile and adult stages, either independently or combined, influences egg-to-adult viability, adult sperm motility and fertility in high- and low-latitude populations of Drosophila subobscura. We found both population- and temperature-specific effects on survival and sperm motility; juvenile heat stress decreased survival and subsequent sperm motility and each trait was lower in the northern population. We found an interaction between population and temperature on fertility following application of juvenile heat stress; although fertility was negatively impacted in both populations, the southern population was less affected. When the adult stage was also subject to heat stress, the southern population exhibited positive carry-over effects whereas the northern population's fertility remained low. Thus, the northern population is more susceptible to sublethal reproductive consequences following exposure to juvenile heat stress. This may be common in other organisms with complex life cycles and current models predicting population responses to climate change, which do not take into account the impact of juvenile heat stress on reproductive performance, may be too conservative.
Assuntos
Adaptação Fisiológica , Drosophila , Motilidade dos Espermatozoides , Temperatura , Aclimatação , Animais , Mudança Climática , Masculino , Estresse FisiológicoRESUMO
Continued and accelerating change in the thermal environment places an ever-greater priority on understanding how organisms are going to respond. The paradigm of 'move, adapt or die', regarding ways in which organisms can respond to environmental stressors, stimulates intense efforts to predict the future of biodiversity. Assuming that extinction is an unpalatable outcome, researchers have focussed attention on how organisms can shift in their distribution to stay in the same thermal conditions or can stay in the same place by adapting to a changing thermal environment. How likely these respective outcomes might be depends on the answer to a fundamental evolutionary question, namely what genetic changes underpin adaptation to the thermal environment. The increasing access to and decreasing costs of next-generation sequencing (NGS) technologies, which can be applied to both model and non-model systems, provide a much-needed tool for understanding thermal adaptation. Here we consider broadly what is already known from non-NGS studies about thermal adaptation, then discuss the benefits and challenges of different NGS methodologies to add to this knowledge base. We then review published NGS genomics and transcriptomics studies of thermal adaptation to heat stress in metazoans and compare these results with previous non-NGS patterns. We conclude by summarising emerging patterns of genetic response and discussing future directions using these increasingly common techniques.
Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura , Animais , Perfilação da Expressão Gênica , Genômica/métodos , Genótipo , Fenótipo , Estresse FisiológicoRESUMO
Successful urban colonization by formerly rural species represents an ideal situation in which to study adaptation to novel environments. We address this issue using candidate genes for behavioural traits that are expected to play a role in such colonization events. We identified and genotyped 16 polymorphisms in candidate genes for circadian rhythms, harm avoidance and migratory and exploratory behaviour in 12 paired urban and rural populations of the blackbird Turdus merula across the Western Palaearctic. An exonic microsatellite in the SERT gene, a candidate gene for harm avoidance behaviour, exhibited a highly significant association with habitat type in an analysis conducted across all populations. Genetic divergence at this locus was consistent in 10 of the 12 population pairs; this contrasts with previously reported stochastic genetic divergence between these populations at random markers. Our results indicate that behavioural traits related to harm avoidance and associated with the SERT polymorphism experience selection pressures during most blackbird urbanization events. These events thus appear to be influenced by homogeneous adaptive processes in addition to previously reported demographic founder events.
Assuntos
Adaptação Fisiológica/genética , Comportamento Animal , Polimorfismo Genético , Aves Canoras/genética , Urbanização , Animais , Ritmo Circadiano , Ecossistema , Deriva Genética , Loci Gênicos , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites , Dados de Sequência Molecular , Fenótipo , Seleção Genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
Key to understanding the negative impacts of artificial light at night (ALAN) on human health and the natural environment is its relationship with human density. ALAN has often primarily been considered an urban issue, however although over half of the population is urbanized, the 46 % that are not inhabit a dispersed array of smaller settlements. Here, we determine the global relationships between two dimensions of ALAN, namely direct emissions (radiance) and skyglow, and human density, and how these relationships vary across continents. We correct the Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) product for albedo, skyglow, airglow, the aurora and permanent snow and ice to represent upward radiance overland at 1.61 ∗ 2.12 km resolution from artificial sources only. For skyglow we use the World Atlas of Artificial Sky Brightness. Globally (between 59°N and 55°S), direct emissions were detected over 26.5 % and skyglow over 46.9 % of land area. Over half of all cumulative direct emissions (54.9 %) were emitted at low levels by the non-urban population, whilst these populations experienced the negative impacts of over two-thirds of all cumulative skyglow (69.8 %). This emphasises the extent of ALAN outside of urban areas, and its similarity in this regard to a number of other forms of pollution. Although powerful sources of rural direct emissions (e.g., industry, recreation) are important contributors of light pollution, cumulatively they only contributed 10 % to total direct emissions. The relationship between each dimension of ALAN and population density varied across continents, driven by powerful rural emissions, non-urban populations and urban design. These relationships reflect the unique socio-economic and geographical make-up of each region and inform on where best to target light pollution mitigation strategies, not only in urban areas but also in rural ones.
Assuntos
Poluição Ambiental , HumanosRESUMO
Alteration in land use is likely to be a major driver of changes in the distribution of ecosystem services before 2050. In Europe, urbanization will probably be the main cause of land-use change. This increase in urbanization will result in spatial shifts in both supplies of ecosystem services and the beneficiaries of those services; the net outcome of such shifts remains to be determined. Here, we model changes in urban land cover in Britain based on large (16%) projected increases in the human population by 2031, and the consequences for three different services--flood mitigation, agricultural production and carbon storage. We show that under a scenario of densification of urban areas, the combined effect of increasing population and loss of permeable surfaces is likely to result in 1.7 million people living within 1 km of rivers with at least 10 per cent increases in projected peak flows, but that increasing suburban 'sprawl' will have little effect on flood mitigation services. Conversely, losses of stored carbon and agricultural production are over three times as high under the sprawl as under the 'densification' urban growth scenarios. Our results illustrate the challenges of meeting, but also of predicting, future demands and patterns of ecosystem services in the face of increasing urbanization.
Assuntos
Ecossistema , Modelos Biológicos , Urbanização/tendências , Agricultura/estatística & dados numéricos , Carbono/análise , Simulação por Computador , Inundações/estatística & dados numéricos , Humanos , Densidade Demográfica , Reino UnidoRESUMO
Mammalian life shows huge diversity, but most groups remain nocturnal in their activity pattern. A key unresolved question is whether mammal species that have diversified into different diel niches occupy unique regions of functional trait space. For 5,104 extant mammals we show here that daytime-active species (cathemeral or diurnal) evolved trait combinations along different gradients from those of nocturnal and crepuscular species. Hypervolumes of five major functional traits (body mass, litter size, diet, foraging strata, habitat breadth) reveal that 30% of diurnal trait space is unique, compared to 55% of nocturnal trait space. Almost half of trait space (44%) of species with apparently obligate diel niches is shared with those that can switch, suggesting that more species than currently realised may be somewhat flexible in their activity patterns. Increasingly, conservation measures have focused on protecting functionally unique species; for mammals, protecting functional distinctiveness requires a focus across diel niches.
Assuntos
Ritmo Circadiano/fisiologia , Ecossistema , Mamíferos/fisiologia , Estações do Ano , Adaptação Fisiológica , Animais , Biodiversidade , Mamíferos/classificação , Mamíferos/genética , Fenótipo , Filogenia , Dinâmica Populacional , Característica Quantitativa Herdável , Especificidade da EspécieRESUMO
Understanding the forms that the geographic range limits of species take, their causes and their consequences are key issues in ecology and evolutionary biology. They are also topics on which understanding is advancing rapidly. This themed issue of Proc. R. Soc. B focuses on the wide variety of current research perspectives on the nature and determinants of the limits to geographic ranges. The contributions address important themes, including the roles and influences of dispersal limitation, species interactions and physiological limitation, the broad patterns in the structure of geographic ranges, and the fundamental question of why at some point species no longer evolve the ability to overcome the factors constraining their distributions and thus fail to continue to spread. In this introduction, these contributions are placed in the wider context of these broad themes.
Assuntos
Evolução Biológica , Demografia , EcossistemaRESUMO
Linking species and ecosystems often relies on approaches that consider how the traits exhibited by species affect ecosystem processes. One method is to estimate functional diversity (FD) based on the dispersion of species in functional trait space. Individuals within a species also differ, however, and an unresolved challenge is how to include such intraspecific variability in a measure of functional diversity. Our solution is to extend an existing measure to variation among individuals within species. Here, simulations demonstrate how the new measure behaves relative to one that does not include individual variation. Individual-level FD was less well associated with species richness than species-level FD in a single trait dimension, because species differed in their intraspecific variation. However, in multiple trait dimensions, there was a strong association between individual- and species-level FD and richness, because many traits result in a tight relationship between functional diversity and species richness. The correlation between the two FD measures weakened as the amount of intraspecific variability increased. Analyzing natural plant communities we found no relationship between species richness and functional diversity. In these analyses, we did not have to specify the source of intraspecific variation. In fact, the variation was only among individuals. The measure can, however, include differences in the amount of intraspecific variation at different sites, as we demonstrate. Including intraspecific variation should allow a more complete understanding of the processes that link individuals and ecosystems and provide better predictions about the consequences of extinctions for ecosystem processes.
Assuntos
Biodiversidade , Plantas/classificação , Simulação por Computador , Plantas/metabolismoRESUMO
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
Assuntos
Cidades , Monitoramento Ambiental , Solo , Temperatura , Árvores , Clima , Temperatura Alta , Humanos , Estações do AnoRESUMO
Energy and habitat heterogeneity are important correlates of spatial variation in species richness, though few investigations have sought to determine simultaneously their relative influences. Here we use the South African avifauna to examine the extent to which species richness is related to these variables and how these relationships depend on spatial grain. Taking spatial autocorrelation and area effects into account, we find that primary productivity, precipitation, absolute minimum temperature, and, at coarser resolutions, habitat heterogeneity account for most of the variation in species richness. Species richness and productivity are positively related, whereas the relationship between potential evapotranspiration (PET) and richness is unimodal. This is largely because of the constraining effects of low rainfall on productivity in high-PET areas. The increase in the importance of vegetation heterogeneity as an explanatory variable is caused largely by an increase in the range of vegetation heterogeneity included at coarse resolutions and is probably also a result of the positive effects of environmental heterogeneity on species richness. Our findings indicate that species richness is correlated with, and hence likely a function of, several variables, that spatial resolution and extent must be taken into account during investigations of these relationships, and that surrogate measures for productivity should be interpreted cautiously.
RESUMO
Together with patterns of speciation and extinction, post-speciation transformations in the range sizes of individual species determine the form of contemporary species range-size distributions. However, the methodological problems associated with tracking the dynamics of a species' range size over evolutionary time have precluded direct study of such range-size transformations, although indirect evidence has led to several models being proposed describing the form that they might take. Here, we use independently derived molecular data to estimate ages of species in six monophyletic groups of birds, and examine the relationship between species age and global geographic range size. We present strong evidence that avian range sizes are not static over evolutionary time. In addition, it seems that, with the regular exception of certain taxa (for example island endemics and some threatened species), range-size transformations are non-random in birds. In general, range sizes appear to expand relatively rapidly post speciation; subsequently; and perhaps more gradually, they then decline as species age. We discuss these results with reference to the various models of range-size dynamics that have been proposed.
Assuntos
Evolução Biológica , Aves/classificação , Aves/genética , Animais , Aves/fisiologia , Ecossistema , Modelos Biológicos , Filogenia , Especificidade da Espécie , Fatores de TempoRESUMO
Frequency distributions of body size have been reported in the literature for a range of animal higher taxa. However, the reported shapes of these distributions may be biased by species missing from them, specifically by currently undiscovered species. There is a body of evidence that the small-bodied species in a taxon are described later, on average, than the large-bodied. From this, we predict that the means of animal body size frequency distributions should decrease through time, and the skewnesses of the distributions increase. These predictions are shown to be true for body size distributions for five different higher taxa of animals. Thus, any reported body size distribution for a taxon is likely to be systematically biased, even if it includes all the species which are known, if many species are likely to remain undiscovered.
Assuntos
Constituição Corporal , Especificidade da Espécie , Animais , Austrália , Aves/anatomia & histologia , Borboletas/anatomia & histologia , Besouros/anatomia & histologia , Mamíferos/anatomia & histologia , América do Norte , Reino UnidoRESUMO
Complementarity-based algorithms for the selection of reserve networks emphasize the need to represent biodiversity features efficiently, but this may not be sufficient to maintain those features in the long term. Here, we use data from the Common Birds Census in Britain as an exemplar data set to determine guidelines for the selection of reserve networks which are more robust to temporal turnover in features. The extinction patterns found over the 1981-1991 interval suggest that two such guidelines are to represent species in the best sites where they occur (higher local abundance) and to give priority to the rarer species. We tested five reserve selection strategies, one which finds the minimum representation set and others which incorporate the first or both guidelines proposed. Strategies were tested in terms of their efficiency (inversely related to the total area selected) and effectiveness (inversely related to the percentage of species lost) using data on eight pairs of ten-year intervals. The minimum set strategy was always the most efficient, but suffered higher species loss than the others, suggesting that there is a trade-off between efficiency and effectiveness. A desirable compromise can be achieved by embedding the concerns about the long-term maintenance of the biodiversity features of interest in the complementarity-based algorithms.
Assuntos
Aves/fisiologia , Ecossistema , Algoritmos , Animais , Conservação dos Recursos Naturais , Genética Populacional , Dinâmica Populacional , Reino UnidoRESUMO
The greater latitudinal extents of occurrence of species towards higher latitudes has been attributed to the broadening of physiological tolerances with latitude as a result of increases in climatic variation. While there is some support for such patterns in climate, the physiological tolerances of species across large latitudinal gradients have seldom been assessed. Here we report findings for insects based on published upper and lower lethal temperature data. The upper thermal limits show little geographical variation. In contrast, the lower bounds of supercooling points and lower lethal temperatures do indeed decline with latitude. However, this is not the case for the upper bounds, leading to an increase in the variation in lower lethal limits with latitude. These results provide some support for the physiological tolerance assumption associated with Rapoport's rule, but highlight the need for coupled data on species tolerances and range size.
Assuntos
Adaptação Fisiológica , Insetos/fisiologia , Temperatura , Animais , Clima , Congelamento , Geografia , Especificidade da EspécieRESUMO
Previous studies suggest that a network of nature reserves with maximum efficiency (obtained by selecting the minimum area such that each species is represented once) is likely to be insufficient to maintain species in the network over time. Here, we test the performance of three selection strategies which require presence-absence data, two of them previously proposed (multiple representations and selecting an increasing percentage of each species' range) and a novel one based on selecting the site where each species has exhibited a higher permanence rate in the past. Multiple representations appear to be a safer strategy than selecting a percentage of range because the former gives priority to rarer species while the latter favours the most widespread. The most effective strategy was the one based on the permanence rate, indicating that the robustness of reserve networks can be improved by adopting reserve selection procedures that integrate information about the relative value of sites. This strategy was also very efficient, suggesting that the investment made in the monitoring schemes may be compensated for by a lower cost in reserve acquisition.
Assuntos
Aves/genética , Ecossistema , Variação Genética , Animais , Conservação dos Recursos Naturais , Feminino , Genética Populacional , Masculino , Modelos Genéticos , Densidade Demográfica , Seleção Genética , Especificidade da EspécieRESUMO
Patterns of species richness along latitudinal, elevational and depth gradients often exhibit a mid-gradient peak. Similar patterns with a mid-domain peak in richness are produced, as a result of geometric constraints on species distributions, by models that randomize species range size and placement over a bounded gradient. Proponents of these so-called mid-domain models argue that they provide an appropriate null hypothesis for examining species richness patterns along spatial gradients. Furthermore, some claim that because these models seem to explain a large proportion of the large-scale spatial variation in richness, geometric constraints on species distribution are in fact the cause of these patterns. A critical examination of model assumptions reveals that some are unrealistic, conceptually flawed or internally inconsistent. Additionally, tests of mid-domain models have suffered from methodological deficiencies derived from arbitrariness and circularity in the definition of domain boundaries, collapsing two-dimensional (2-D) patterns into a single dimension (1-D), and the use of interpolated ranges, all of which can bias test results in favour of the models. Tests have also been statistically naive by using fairly insensitive measures of deviation between observed and predicted patterns and ignoring the increased probability of Type I error that can result in analyses of spatially autocorrelated data. In spite of this, a review of the empirical evidence indicates that most studies do not show a high degree of concordance between observed and predicted species richness patterns, particularly in 2-D. Additionally, spatial patterns of variation in range size and species turnover do not unequivocally support mid-domain models. Thus, the models do not adequately describe observed species richness gradients and thus fail to explain them. Although mid-domain models have served a useful purpose in drawing attention to the need to clarify the null expectation in the study of species richness gradients, their use appears to be severely limited by difficulties associated with the treatment of ranges, boundary definitions and a lack of clarity regarding the extent to which the observed data should be used to generate the null patterns.
RESUMO
Principal and reduced major axes, and Bulmer's (1975) tests have been suggested as methods for detecting the presence of density dependence in a series of population censuses that are unsuitable for analysis by alternative means e.g. by k-factor analysis. These alternative methods are tested using census data, some of which are previously unpublished, from natural populations known from independent evidence to be subject to density dependent processes. All the methods fail to detect density dependence reliably, irrespective of sample size and the dynamics of the population. We conclude that none of the methods tested is sufficiently reliable to be useful as a test of density dependence in sequential censues of animal populations.
RESUMO
An objective of biodiversity conservation activities is to minimize the exposure of biodiversity features to threatening processes and to ensure, as far as possible, that biodiversity persists in the landscape. We discuss how issues of vulnerability and persistence can and should be addressed at all stages of the conservation planning and implementation process. Procedures for estimating the likelihood of persistence and for measuring degrees of vulnerability at different spatial and temporal scales using subjective assessments, rules of thumb and analytical and simulation models are reviewed. The application of information on vulnerability and persistence to conservation planning and management is discussed under the headings of natural dynamics, replication of protection, levels of representation, source and sink population structures, refuges and critical resources, reserve design, habitat fragmentation and levels of management.
Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Animais , Comportamento Animal , Classificação , Simulação por Computador , Meio Ambiente , GeografiaRESUMO
In this paper we demonstrate how broad scale comparative physiology has an important role to play in informing a variety of assumptions made in macroecology. We do so by examining large-scale geographic variation in insect development, thermal tolerance and metabolic rate. From these studies, and those from the literature on insect water loss and thermoregulation, we show that there is often a bias to the geographic extent of available empirical data. Studies of cold hardiness are most usually undertaken at high latitudes, while investigations of upper thermal tolerances and water loss are most common in warm arid regions. Likewise, we demonstrate that much variation in insect physiological tolerances is partitioned at higher taxonomic levels, which has important implications for comparative physiology. Intriguingly, data on the full range of variables we review are available for only three species. We also show that, despite its importance, body size is regularly reported in only some kinds of investigations (metabolic rate, water loss rate), whereas in others (upper lethal temperature, cold hardiness, development) this variable is often ignored. In short, although large-scale comparative physiology can contribute considerable understanding to both physiology and ecology, there is much that remains to be done.