Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cell ; 150(2): 377-88, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22771138

RESUMO

Intestinal gluconeogenesis is involved in the control of food intake. We show that mu-opioid receptors (MORs) present in nerves in the portal vein walls respond to peptides to regulate a gut-brain neural circuit that controls intestinal gluconeogenesis and satiety. In vitro, peptides and protein digests behave as MOR antagonists in competition experiments. In vivo, they stimulate MOR-dependent induction of intestinal gluconeogenesis via activation of brain areas receiving inputs from gastrointestinal ascending nerves. MOR-knockout mice do not carry out intestinal gluconeogenesis in response to peptides and are insensitive to the satiety effect induced by protein-enriched diets. Portal infusions of MOR modulators have no effect on food intake in mice deficient for intestinal gluconeogenesis. Thus, the regulation of portal MORs by peptides triggering signals to and from the brain to induce intestinal gluconeogenesis are links in the satiety phenomenon associated with alimentary protein assimilation.


Assuntos
Proteínas Alimentares/metabolismo , Ingestão de Alimentos , Gluconeogênese , Receptores Opioides mu/metabolismo , Resposta de Saciedade , Animais , Encéfalo/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/antagonistas & inibidores
2.
Neuroendocrinology ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38852578

RESUMO

INTRODUCTION: Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di/tripeptides. Intestinal di/tripeptides absorption is carried out by the Peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS: To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high- fat high-sucrose (HF-HS) diet. RESULTS: Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by a HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION: Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.

3.
Neuroendocrinology ; 111(12): 1249-1265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33429400

RESUMO

INTRODUCTION: Several studies have suggested that diet, especially the one enriched in microbiota-fermented fibers or fat, regulates behavior. The underlying mechanisms are currently unknown. We previously reported that certain macronutrients (fermentable fiber and protein) regulate energy homeostasis via the activation of intestinal gluconeogenesis (IGN), which generates a neural signal to the brain. We hypothesized that these nutriments might control behavior using the same gut-brain circuit. METHODS: Wild-type and IGN-deficient mice were fed chow or diets enriched in protein or fiber. Changes in their behavior were assessed using suited tests. Hippocampal neurogenesis, extracellular levels of serotonin, and protein expression levels were assessed by immunofluorescence, in vivo dialysis, and Western blotting, respectively. IGN was rescued by infusing glucose into the portal vein of IGN-deficient mice. RESULTS: We show here that both fiber- and protein-enriched diets exert beneficial actions on anxiety-like and depressive-like behaviors. These benefits do not occur in mice lacking IGN. Consistently, IGN-deficient mice display hallmarks of depressive-like disorders, including decreased hippocampal neurogenesis, basal hyperactivity, and deregulation of the hypothalamic-pituitary-adrenal axis, which are associated with increased expression of the precursor of corticotropin-releasing hormone in the hypothalamus and decreased expression of the glucocorticoid receptor in the hippocampus. These neurobiological alterations are corrected by portal glucose infusion mimicking IGN. CONCLUSION: IGN translates nutritional information, allowing the brain to finely coordinate energy metabolism and behavior.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Depressão/metabolismo , Fibras na Dieta/metabolismo , Proteínas Alimentares/metabolismo , Gluconeogênese/fisiologia , Intestino Delgado/metabolismo , Animais , Modelos Animais de Doenças , Camundongos
4.
Neuroendocrinology ; 111(6): 555-567, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32516785

RESUMO

INTRODUCTION: Intestinal gluconeogenesis (IGN) exerts metabolic benefits in energy homeostasis via the neural sensing of portal glucose. OBJECTIVE: The aim of this work was to determine central mechanisms involved in the effects of IGN on the control of energy homeostasis. METHODS: We investigated the effects of glucose infusion into the portal vein, at a rate that mimics IGN, in conscious wild-type, leptin-deficient Ob/Ob and calcitonin gene-related peptide (CGRP)-deficient mice. RESULTS: We report that portal glucose infusion decreases food intake and plasma glucose and induces in the hypothalamic arcuate nucleus (ARC) the phosphorylation of STAT3, the classic intracellular messenger of leptin signaling. This notably takes place in POMC-expressing neurons. STAT3 phosphorylation does not require leptin, since portal glucose effects are observed in leptin-deficient Ob/Ob mice. We hypothesized that the portal glucose effects could require CGRP, a neuromediator previously suggested to suppress hunger. In line with this hypothesis, neither the metabolic benefits nor the phosphorylation of STAT3 in the ARC take place upon portal glucose infusion in CGRP-deficient mice. Moreover, intracerebroventricular injection of CGRP activates hypothalamic phosphorylation of STAT3 in mice, and CGRP does the same in hypothalamic cells. Finally, no metabolic benefit of dietary fibers (known to depend on the induction of IGN), takes place in CGRP-deficient mice. CONCLUSIONS: CGRP-induced phosphorylation of STAT3 in the ARC is part of the neural chain determining the hunger-modulating and glucose-lowering effects of IGN/portal glucose.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gluconeogênese/fisiologia , Glucose/farmacologia , Intestinos/metabolismo , Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/deficiência , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Glucose/administração & dosagem , Infusões Intravenosas , Leptina/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fosforilação/fisiologia , Veia Porta
5.
Gut ; 69(12): 2193-2202, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32205419

RESUMO

OBJECTIVE: Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN: To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS: We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION: We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.


Assuntos
Trato Gastrointestinal/metabolismo , Gluconeogênese/fisiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/fisiopatologia , Animais , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica , Interleucina-6/metabolismo , Fígado/inervação , Fígado/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
6.
PLoS Genet ; 10(6): e1004449, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24967841

RESUMO

During oogenesis, the egg prepares for fertilization and early embryogenesis. As a consequence, vesicle transport is very active during vitellogenesis, and oocytes are an outstanding system to study regulators of membrane trafficking. Here, we combine zebrafish genetics and the oocyte model to identify the molecular lesion underlying the zebrafish souffle (suf) mutation. We demonstrate that suf encodes the homolog of the Hereditary Spastic Paraplegia (HSP) gene SPASTIZIN (SPG15). We show that in zebrafish oocytes suf mutants accumulate Rab11b-positive vesicles, but trafficking of recycling endosomes is not affected. Instead, we detect Suf/Spastizin on cortical granules, which undergo regulated secretion. We demonstrate genetically that Suf is essential for granule maturation into secretion competent dense-core vesicles describing a novel role for Suf in vesicle maturation. Interestingly, in suf mutants immature, secretory precursors accumulate, because they fail to pinch-off Clathrin-coated buds. Moreover, pharmacological inhibition of the abscission regulator Dynamin leads to an accumulation of immature secretory granules and mimics the suf phenotype. Our results identify a novel regulator of secretory vesicle formation in the zebrafish oocyte. In addition, we describe an uncharacterized cellular mechanism for Suf/Spastizin activity during secretion, which raises the possibility of novel therapeutic avenues for HSP research.


Assuntos
Proteínas de Transporte/genética , Oócitos/metabolismo , Degeneração Retiniana/genética , Vesículas Secretórias/genética , Paraplegia Espástica Hereditária/genética , Proteínas de Peixe-Zebra/genética , Animais , Citoplasma/metabolismo , Feminino , Fertilização/genética , Oócitos/crescimento & desenvolvimento , Oogênese/genética , Degeneração Retiniana/patologia , Paraplegia Espástica Hereditária/patologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
7.
J Proteome Res ; 15(4): 1342-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26958868

RESUMO

The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.


Assuntos
Antiporters/genética , AMP Cíclico/farmacologia , Células Epiteliais/efeitos dos fármacos , Glucagon/farmacologia , Glucose-6-Fosfatase/genética , Glucose/biossíntese , Proteínas de Transporte de Monossacarídeos/genética , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Animais , Antiporters/metabolismo , Células CACO-2 , Linhagem Celular , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Células Hep G2 , Humanos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Biossíntese de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Transdução de Sinais
8.
Diabetologia ; 59(12): 2645-2653, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27631137

RESUMO

AIMS/HYPOTHESIS: Despite the strong correlation between non-alcoholic fatty liver disease and insulin resistance, hepatic steatosis is associated with greater whole-body insulin sensitivity in several models. We previously reported that the inhibition of hepatic glucose production (HGP) protects against the development of obesity and diabetes despite severe steatosis, thanks to the secretion of specific hepatokines such as fibroblast growth factor 21 (FGF21) and angiopoietin-related growth factor. In this work, we focused on adipose tissue to assess whether liver metabolic fluxes might, by interorgan communication, control insulin signalling in lean animals. METHODS: Insulin signalling was studied in the adipose tissue of mice lacking the catalytic subunit of glucose 6-phosphatase, the key enzyme in endogenous glucose production, in the liver (L-G6pc -/- mice). Morphological and metabolic changes in the adipose tissues were characterised by histological analyses, gene expression and protein content. RESULTS: Mice lacking HGP exhibited improved insulin sensitivity of the phosphoinositide 3-kinase/Akt pathway in the subcutaneous adipose tissue associated with a browning of adipocytes. The suppression of HGP increased FGF21 levels in lean animals, and increased FGF21 was responsible for the metabolic changes in the subcutaneous adipose tissue but not for its greater insulin sensitivity. The latter might be linked to an increase in the ratio of monounsaturated to saturated fatty acids released by the liver. CONCLUSIONS: Our work provides evidence that HGP controls subcutaneous adipose tissue browning and insulin sensitivity through two pathways: the release of beneficial hepatokines and changes in hepatic fatty acids profile.


Assuntos
Glucose/metabolismo , Fígado/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Feminino , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoglicerídeos/metabolismo , Gordura Subcutânea/metabolismo
9.
J Inherit Metab Dis ; 38(3): 521-7, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25164786

RESUMO

Patients with glycogen storage diseases type 1 (GSD1) suffer from life-threatening hypoglycaemia, when left untreated. Despite an intensive dietary treatment, patients develop severe complications, such as liver tumors and renal failure, with aging. Until now, the animal models available for studying the GSD1 did not survive after weaning. To gain further insights into the molecular mechanisms of the disease and to evaluate potential treatment strategies, we have recently developed novel mouse models in which the catalytic subunit of glucose-6 phosphatase (G6pc) is deleted in each glucose-producing organ specifically. For that, B6.G6pc(ex3lox/ex3lox) mice were crossed with transgenic mice expressing a recombinase under the control of the serum albumin, the kidney androgen protein or the villin promoter, in order to obtain liver, kidney or intestine G6pc(-/-) mice, respectively. As opposed to total G6pc knockout mice, tissue-specific G6pc deficiency allows mice to maintain their blood glucose by inducing glucose production in the other gluconeogenic organs. Even though it is considered that glucose is produced mainly by the liver, liver G6pc(-/-) mice are perfectly viable and exhibit the same hepatic pathological features as GSD1 patients, including the late development of hepatocellular adenomas and carcinomas. Interestingly, renal G6pc(-/-) mice developed renal symptoms similar to the early human GSD1 nephropathy. This includes glycogen overload that leads to nephromegaly and morphological and functional alterations in the kidneys. Thus, our data suggest that renal G6Pase deficiency per se is sufficient to induce the renal pathology of GSD1. Therefore, these new mouse models should allow us to improve the strategies of treatment on both nutritional and pharmacological points of view.


Assuntos
Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/genética , Neoplasias Hepáticas/etiologia , Insuficiência Renal/etiologia , Animais , Modelos Animais de Doenças , Cães , Terapia Genética , Doença de Depósito de Glicogênio Tipo I/terapia , Humanos , Hipoglicemia/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos , Fatores de Tempo
10.
Obesity (Silver Spring) ; 32(4): 710-722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311801

RESUMO

OBJECTIVE: Intestinal gluconeogenesis (IGN), via the initiation of a gut-brain nervous circuit, accounts for the metabolic benefits linked to dietary proteins or fermentable fiber in rodents and has been positively correlated with the rapid amelioration of body weight after gastric bypass surgery in humans with obesity. In particular, the activation of IGN moderates the development of hepatic steatosis accompanying obesity. In this study, we investigated the specific effects of IGN on adipose tissue metabolism, independent of its induction by nutritional manipulation. METHODS: We used two transgenic mouse models of suppression or overexpression of G6pc1, the catalytic subunit of glucose-6 phosphatase, which is the key enzyme of endogenous glucose production specifically in the intestine. RESULTS: Under a hypercaloric diet, mice overexpressing IGN showed lower adiposity and higher thermogenic capacities than wild-type mice, featuring marked browning of white adipose tissue (WAT) and prevention of the whitening of brown adipose tissue (BAT). Sympathetic denervation restricted to BAT caused the loss of the antiobesity effects associated with IGN. Conversely, IGN-deficient mice exhibited an increase in adiposity under a standard diet, which was associated with decreased expression of markers of thermogenesis in both BAT and WAT. CONCLUSIONS: IGN is sufficient to activate the sympathetic nervous system and prevent the expansion and the metabolic alterations of BAT and WAT metabolism under a high-calorie diet, thereby preventing the development of obesity. These data increase knowledge of the mechanisms of weight reduction in gastric bypass surgery and pave the way for new approaches to prevent or cure obesity.


Assuntos
Tecido Adiposo Marrom , Gluconeogênese , Humanos , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Gluconeogênese/genética , Obesidade/complicações , Tecido Adiposo Branco/metabolismo , Glucose/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese , Metabolismo Energético
11.
Nat Rev Gastroenterol Hepatol ; 20(3): 183-194, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36470967

RESUMO

The intestine, like the liver and kidney, in various vertebrates and humans is able to carry out gluconeogenesis and release glucose into the blood. In the fed post-absorptive state, intestinal glucose is sensed by the gastrointestinal nervous system. The latter initiates a signal to the brain regions controlling energy homeostasis and stress-related behaviour. Intestinal gluconeogenesis (IGN) is activated by several complementary mechanisms, in particular nutritional situations (for example, when food is enriched in protein or fermentable fibre and after gastric bypass surgery in obesity). In these situations, IGN has several metabolic and behavioural benefits. As IGN is activated by nutrients capable of fuelling systemic gluconeogenesis, IGN could be a signal to the brain that food previously ingested is suitable for maintaining plasma glucose for a while. This process might account for the benefits observed. Finally, in this Perspective, we discuss how the benefits of IGN in fasting and fed states could explain why IGN emerged and was maintained in vertebrates by natural selection.


Assuntos
Gluconeogênese , Intestinos , Animais , Humanos , Gluconeogênese/fisiologia , Glucose/metabolismo , Homeostase/fisiologia , Fígado/metabolismo
12.
Biochimie ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38040189

RESUMO

At the interface between the outside world and the self, the intestine is the first organ receiving nutritional information. One intestinal function, gluconeogenesis, is activated by various nutrients, particularly diets enriched in fiber or protein, and thus results in glucose production in the portal vein in the post-absorptive period. The detection of portal glucose induces a nervous signal controlling the activity of the central nuclei involved in the regulation of metabolism and emotional behavior. Induction of intestinal gluconeogenesis is necessary for the beneficial effects of fiber or protein-enriched diets on metabolism and emotional behavior. Through its ability to translate nutritional information from the diet to the brain's regulatory centers, intestinal gluconeogenesis plays an essential role in maintaining physiological balance.

13.
Mol Metab ; 70: 101700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870604

RESUMO

OBJECTIVE: Deregulation of hepatic glucose production is a key driver in the pathogenesis of diabetes, but its short-term regulation is incompletely deciphered. According to textbooks, glucose is produced in the endoplasmic reticulum by glucose-6-phosphatase (G6Pase) and then exported in the blood by the glucose transporter GLUT2. However, in the absence of GLUT2, glucose can be produced by a cholesterol-dependent vesicular pathway, which remains to be deciphered. Interestingly, a similar mechanism relying on vesicle trafficking controls short-term G6Pase activity. We thus investigated whether Caveolin-1 (Cav1), a master regulator of cholesterol trafficking, might be the mechanistic link between glucose production by G6Pase in the ER and glucose export through a vesicular pathway. METHODS: Glucose production from fasted mice lacking Cav1, GLUT2 or both proteins was measured in vitro in primary culture of hepatocytes and in vivo by pyruvate tolerance tests. The cellular localization of Cav1 and the catalytic unit of glucose-6-phosphatase (G6PC1) were studied by western blotting from purified membranes, immunofluorescence on primary hepatocytes and fixed liver sections and by in vivo imaging of chimeric constructs overexpressed in cell lines. G6PC1 trafficking to the plasma membrane was inhibited by a broad inhibitor of vesicular pathways or by an anchoring system retaining G6PC1 specifically to the ER membrane. RESULTS: Hepatocyte glucose production is reduced at the step catalyzed by G6Pase in the absence of Cav1. In the absence of both GLUT2 and Cav1, gluconeogenesis is nearly abolished, indicating that these pathways can be considered as the two major pathways of de novo glucose production. Mechanistically, Cav1 colocalizes but does not interact with G6PC1 and controls its localization in the Golgi complex and at the plasma membrane. The localization of G6PC1 at the plasma membrane is correlated to glucose production. Accordingly, retaining G6PC1 in the ER reduces glucose production by hepatic cells. CONCLUSIONS: Our data evidence a pathway of glucose production that relies on Cav1-dependent trafficking of G6PC1 to the plasma membrane. This reveals a new cellular regulation of G6Pase activity that contributes to hepatic glucose production and glucose homeostasis.


Assuntos
Glucose-6-Fosfatase , Glucose , Animais , Camundongos , Caveolina 1/metabolismo , Colesterol/metabolismo , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Fígado/metabolismo
14.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
16.
J Hepatol ; 54(3): 529-37, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21109326

RESUMO

BACKGROUND AND AIMS: Glycogen storage disease type 1a (GSD1a) is an inherited disease caused by a deficiency in the catalytic subunit of the glucose-6 phosphatase enzyme (G6Pase). GSD1a is characterized by hypoglycaemia, hyperlipidemia, and lactic acidosis with associated hepatic (including hepatocellular adenomas), renal, and intestinal disorders. A total G6pc (catalytic subunit of G6Pase) knock-out mouse model has been generated that mimics the human pathology. However, these mice rarely live longer than 3 months and long-term liver pathogenesis cannot be evaluated. Herein, we report the long-term characterization of a liver-specific G6pc knock-out mouse model (L-G6pc(-/-)). METHODS: We generated L-G6pc(-/-) mice using an inducible CRE-lox strategy and followed up the development of hepatic tumours using magnetic resonance imaging. RESULTS: L-G6pc(-/-) mice are viable and exhibit normoglycemia in the fed state. They develop hyperlipidemia, lactic acidosis, and uricemia during the first month after gene deletion. However, these plasmatic parameters improved after 6 months. L-G6pc(-/-) mice develop hepatomegaly with glycogen accumulation and hepatic steatosis. Using an MRI approach, we could detect hepatic nodules with diameters of less than 1 mm, 9 months after induction of deficiency. Hepatic nodules (1 mm) were detected in 30-40% of L-G6pc(-/-) mice at 12 months. After 18 months, all L-G6pc(-/-) mice developed multiple hepatocellular adenomas of 1-10 mm diameter. CONCLUSIONS: This is the first report of a viable animal model of the hepatic pathology of GSD1a, including the late development of hepatocellular adenomas.


Assuntos
Adenoma de Células Hepáticas/etiologia , Glucose-6-Fosfatase/antagonistas & inibidores , Glucose-6-Fosfatase/genética , Neoplasias Hepáticas Experimentais/etiologia , Fígado/enzimologia , Adenoma de Células Hepáticas/enzimologia , Adenoma de Células Hepáticas/patologia , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Fígado Gorduroso/enzimologia , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Feminino , Técnicas de Inativação de Genes , Marcação de Genes , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/etiologia , Doença de Depósito de Glicogênio Tipo I/genética , Hepatomegalia/enzimologia , Hepatomegalia/etiologia , Hepatomegalia/patologia , Humanos , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica
17.
Proc Nutr Soc ; 80(2): 118-125, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33190653

RESUMO

High-protein meals and foods are promoted for their beneficial effects on satiety, weight loss and glucose homeostasis. However, the mechanisms involved and the long-term benefits of such diets are still debated. We here review how the characterisation of intestinal gluconeogenesis (IGN) sheds new light on the mechanisms by which protein diets exert their beneficial effects on health. The small intestine is the third organ (in addition to the liver and kidney) contributing to endogenous glucose production via gluconeogenesis. The particularity of glucose produced by the intestine is that it is detected in the portal vein and initiates a nervous signal to the hypothalamic nuclei regulating energy homeostasis. In this context, we demonstrated that protein diets initiate their satiety effects indirectly via IGN and portal glucose sensing. This induction results in the activation of brain areas involved in the regulation of food intake. The µ-opioid-antagonistic properties of protein digests, exerted in the portal vein, are a key link between IGN induction and protein-enriched diet in the control of satiety. From our results, IGN can be proposed as a mandatory link between nutrient sensing and the regulation of whole-body homeostasis. The use of specific mouse models targeting IGN should allow us to identify several metabolic functions that could be controlled by protein diets. This will lead to the characterisation of the mechanisms by which protein diets improve whole-body homeostasis. These data could be the basis of novel nutritional strategies targeting the serious metabolic consequences of both obesity and diabetes.


Assuntos
Gluconeogênese , Intestinos , Animais , Glucose , Camundongos , Obesidade/prevenção & controle , Saciação
18.
Mol Metab ; 43: 101108, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137488

RESUMO

OBJECTIVE: Glucose production in the blood requires the expression of glucose-6 phosphatase (G6Pase), a key enzyme that allows glucose-6 phosphate (G6P) hydrolysis into free glucose and inorganic phosphate. We previously reported that the hepatic suppression of G6Pase leads to G6P accumulation and to metabolic reprogramming in hepatocytes from liver G6Pase-deficient mice (L.G6pc-/-). Interestingly, the activity of the transcription factor carbohydrate response element-binding protein (ChREBP), central for de novo lipid synthesis, is markedly activated in L.G6pc-/- mice, which consequently rapidly develop NAFLD-like pathology. In the current work, we assessed whether a selective deletion of ChREBP could prevent hepatic lipid accumulation and NAFLD initiation in L.G6pc-/- mice. METHODS: We generated liver-specific ChREBP (L.Chrebp-/-)- and/or G6Pase (L.G6pc-/-)-deficient mice using a Cre-lox strategy in B6.SACreERT2 mice. Mice were fed a standard chow diet or a high-fat diet for 10 days. Markers of hepatic metabolism and cellular stress were analysed in the liver of control, L. G6pc-/-, L. Chrebp-/- and double knockout (i.e., L.G6pc-/-.Chrebp-/-) mice. RESULTS: We observed that there was a dramatic decrease in lipid accumulation in the liver of L.G6pc-/-.Chrebp-/- mice. At the mechanistic level, elevated G6P concentrations caused by lack of G6Pase are rerouted towards glycogen synthesis. Importantly, this exacerbated glycogen accumulation, leading to hepatic water retention and aggravated hepatomegaly. This caused animal distress and hepatocyte damage, characterised by ballooning and moderate fibrosis, paralleled with acute endoplasmic reticulum stress. CONCLUSIONS: Our study reveals the crucial role of the ChREBP-G6Pase duo in the regulation of G6P-regulated pathways in the liver.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Glucose-6-Fosfato/metabolismo , Hepatócitos/metabolismo , Hidrólise , Lipídeos/fisiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Monoéster Fosfórico Hidrolases/genética
19.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33999998

RESUMO

Tamoxifen is a selective estrogen receptor modulator used to activate the CREERT2 recombinase, allowing tissue-specific and temporal control of the somatic mutagenesis to generate transgenic mice. Studies integrating development and metabolism require a genetic modification induced by a neonatal tamoxifen administration. Here, we investigate the effects of a neonatal tamoxifen administration on energy homeostasis in adult male and female C57BL/6J mice. C57BL/6J male and female mouse pups received a single injection of tamoxifen 1 day after birth (NTT) and were fed a high-fat/high-sucrose diet at 6 weeks of age. We measured weight, body composition, glucose and insulin tolerance, basal metabolism, and tibia length and weight in adult mice. The neonatal tamoxifen administration exerted long-term, sex-dependent effects on energy homeostasis. NTT female mice became overweight and developed impaired glucose control in comparison to vehicle-treated littermates. NTT females exhibited 60% increased fat mass, increased food intake, decreased physical activity and energy expenditure, impaired glucose and insulin tolerance, and fasting hyperglycemia and hyperinsulinemia. In contrast, NTT male mice exhibited a modest amelioration of glucose and insulin tolerance and long-term decreased lean mass linked to decreased bone weight. These results suggest that the neonatal tamoxifen administration exerted a marked and sex-dependent influence on adult energy homeostasis and bone weight and must therefore be used with caution for the development of transgenic mouse models regarding studies on energy homeostasis and bone biology.


Assuntos
Animais Recém-Nascidos/metabolismo , Glicemia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Fatores Sexuais , Tamoxifeno/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Condicionamento Físico Animal , Moduladores Seletivos de Receptor Estrogênico/farmacologia
20.
Cell Metab ; 2(5): 321-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16271532

RESUMO

Protein feeding is known to decrease hunger and subsequent food intake in animals and humans. It has also been suggested that glucose appearance into portal vein, as occurring during meal assimilation, may induce comparable effects. Here, we connect these previous observations by reporting that intestinal gluconeogenesis (i.e., de novo synthesis of glucose) is induced during the postabsorptive time (following food digestion) in rats specifically fed on protein-enriched diet. This results in glucose release into portal blood, counterbalancing the lowering of glycemia resulting from intestinal glucose utilization. Comparable infusions into the portal vein of control postabsorptive rats (fed on starch-enriched diet) decrease food consumption and activate the hypothalamic nuclei regulating food intake. Similar hypothalamic activation occurs on protein feeding. All these effects are absent after denervation of the portal vein. Thus, portal sensing of intestinal gluconeogenesis may be a novel mechanism connecting the macronutrient composition of diet to food intake.


Assuntos
Proteínas Alimentares , Ingestão de Alimentos , Gluconeogênese , Glucose-6-Fosfatase/biossíntese , Glutaminase/biossíntese , Intestino Delgado/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/biossíntese , Animais , Comportamento Animal , Carboidratos da Dieta , Indução Enzimática , Glucose/metabolismo , Hipotálamo/metabolismo , Veia Porta/inervação , Veia Porta/metabolismo , Período Pós-Prandial , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa