Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 158: 83-95, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33212184

RESUMO

The biopharmaceutical industry continues to develop mAb-based biotherapeutics in increasing numbers. Due to their complexity, there are several critical quality attributes (CQAs) that need to be measured and controlled to guarantee product safety and efficacy. Charge variant analysis is a widely used method to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs) and, together with a bottom-up peptide centred approach, acts as a key analytical platform to fulfil regulatory requirements. Native MS measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact proteins such as mAbs. The resulting native mass spectrum of a mAb is characterized by a narrower charge-state envelope that simplifies the spectra and also condenses the ion signals into fewer peaks, increasing the signal-to-noise ratio. Algorithmic spectral deconvolution is needed for routine accurate and rapid molecular weight determination, and consequently, multiple deconvolution algorithms have evolved over the past decade. Here, we demonstrate the utility of the sliding window algorithm as a robust and powerful deconvolution tool for comprehensive characterisation of charge variant analysis data for mAbs. Optimum performance is evaluated by studying the impact of critical software parameters on detection, identification and relative quantitation of protein isoforms. By combining molecular mass and retention time information, it was possible to identify multiple modifications on adalimumab and trastuzumab, both IgG1 mAbs, including lysine truncation, deamidation and succinimide formation, along with the N-glycan distribution of each of the identified charge variants. Sliding window deconvolution also provides a key benefit of low abundant variant detection in a single analysis and the ability to detect co-eluting components with different relative abundances. The studied mAbs demonstrate the algoritms applicability for efficient data processing of both simple and complex mAbs analysed using pH gradient cation exchange chromatography coupled to native mass spectrometry.


Assuntos
Adalimumab/análise , Controle de Qualidade , Trastuzumab/análise , Adalimumab/química , Resinas de Troca de Cátion/química , Cromatografia por Troca Iônica/métodos , Cromatografia por Troca Iônica/normas , Concentração de Íons de Hidrogênio , Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Software , Trastuzumab/química
2.
MAbs ; 10(8): 1214-1225, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339478

RESUMO

The preponderance and diversity of charge variants in therapeutic monoclonal antibodies has implications for antibody efficacy and degradation. Understanding the extent and impact of minor antibody variants is of great interest, and it is also a critical regulatory requirement. Traditionally, a combination of approaches is used to characterize antibody charge heterogeneity, including ion exchange chromatography and independent mass spectrometric variant site mapping after proteolytic digestion. Here, we describe charge variant native mass spectrometry (CVMS), an integrated native ion exchange mass spectrometry-based charge variant analytical approach that delivers detailed molecular information in a single, semi-automated analysis. We utilized pure volatile salt mobile phases over a pH gradient that effectively separated variants based on minimal differences in isoelectric point. Characterization of variants such as deamidation, which are traditionally unattainable by intact mass due to their minimal molecular weight differences, were measured unambiguously by mass and retention time to allow confident MS1 identification. We demonstrate that efficient chromatographic separation allows introduction of the purified forms of the charge variant isoforms into the Orbitrap mass spectrometer. Our CVMS method allows confident assignment of intact monoclonal antibody isoforms of similar mass and relative abundance measurements across three orders of magnitude dynamic range.


Assuntos
Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Conformação Proteica , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Peso Molecular , Isoformas de Proteínas/química , Reprodutibilidade dos Testes , Trastuzumab/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa