Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(30): 19494-506, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27414167

RESUMO

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.

2.
Colloids Surf B Biointerfaces ; 126: 328-34, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25590794

RESUMO

Antimicrobial oligo (p-phenylene-ethynylene) (OPE) films have previously been demonstrated to show effective ultraviolet A (UVA) light-induced biocidal activity; however, a serious problem arises from the accumulation of dead bacteria and debris on the films that limits their effectiveness and application. In this work, we address this challenge by incorporating thermally-responsive poly (N-isopropylacrylamide) (PNIPAAm), which provides on-demand bacteria-releasing functionality. Multifunctional surfaces comprising blended films of OPE and PNIPAAm were deposited on substrates by resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE) using a sequential co-deposition mode. In this way, RIR-MAPLE enabled the deposition of multifunctional films with surface properties and film functionality that can be tailored, precisely and systematically, by controlling the chemical composition of the deposited film. The surface properties of these films were characterized by UV-visible (UV-vis) absorbance spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. The interactions between bacteria and the deposited films were tested using two model bacteria: Escherichia coli K12 (Gram-negative) and Staphylococcus epidermidis (Gram-positive). The antimicrobial and bacteria-release properties of the blended films were controlled by varying the OPE/PNIPAAm ratio in the RIR-MAPLE emulsion target, providing an easy way to optimize the multifunctional surface. The OPE/PNIPAAm blended films with optimized composition killed a majority of attached E. coli bacteria at 37 °C and under UVA exposure, and the dead bacteria were then removed from the films simply by rinsing with water at 25 °C.


Assuntos
Resinas Acrílicas/farmacologia , Alcinos/farmacologia , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Éteres/farmacologia , Lasers , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Alcinos/síntese química , Alcinos/química , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli K12/efeitos dos fármacos , Éteres/síntese química , Éteres/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Propriedades de Superfície
3.
Colloids Surf B Biointerfaces ; 116: 786-92, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24581926

RESUMO

The antimicrobial oligomer, oligo(p-phenylene-ethynylene) (OPE), was deposited as thin films by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) on solid substrates and exhibited light-induced biocidal activity. The biocidal activity of OPE thin films deposited by spin-coating and drop-casting was also investigated for comparison. Enhanced bacterial attachment and biocidal efficiency of the film deposited by RIR-MAPLE were observed and attributed to nanoscale surface topography of the thin film.


Assuntos
Alcinos/farmacologia , Antibacterianos/farmacologia , Escherichia coli K12/efeitos dos fármacos , Éteres/farmacologia , Lasers , Alcinos/química , Antibacterianos/química , Relação Dose-Resposta a Droga , Éteres/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
4.
J Mater Chem B ; 2(27): 4371-4378, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261577

RESUMO

Multifunctional films with both antimicrobial activity and fouling-release ability based on a biocidal quaternary ammonium salt (QAS) and thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) were deposited on substrates using resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE). The surface properties of these films were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and water contact angle measurements. The biocidal and release properties of the films were tested against Escherichia coli K12 and Staphylococcus epidermidis. At 37 °C, the deposited film facilitated bacterial attachment and killed a majority of attached bacteria. Decrease of the temperature to 25 °C promoted the hydration and at least partial dissolution of PNIPAAm, leading to bacterial detachment from the film. To enhance the retention of PNIPAAm on the substrate, a small amount of (3-aminopropyl)triethoxysilane (APTES) was incorporated as a stabilizer, resulting in a ternary film with biocidal activity and bacterial-release ability after several attach-kill-release cycles. The simplicity and universality of RIR-MAPLE to form films on a wide range of substrata make it a promising technique to deposit multifunctional films to actively mitigate bacterial biofouling.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa