Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Sci Technol ; 57(25): 9376-9384, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37319326

RESUMO

Green rust (GR), a layered double hydroxide (LDH) containing Fe, and magnetite can be found in natural and engineered environments. The ability of chloride GR (GR-Cl) and magnetite to retain iodide as a function of various parameters was investigated. Sorption equilibrium is achieved within 1 day of contact time between iodide and preformed GR-Cl in suspension. pHm variations (7.5-8.5) have no significant influence, but the iodide sorption decreases with increasing ionic strength set by NaCl. Sorption isotherms of iodide suggest that the uptake operates via ionic exchange (IC), which is supported by geochemical modeling. The short-range binding environment of iodide associated with GR is comparable to that of hydrated aqueous iodide ions in solution and is not affected by pHm or ionic strength. This finding hints at an electrostatic interaction with the Fe octahedral sheet, consistent with weak binding of charge balancing anions within an LDH interlayer. The presence of sulfate anions in significant amounts inhibits the iodide uptake due to recrystallization to a different crystal structure. Finally, the transformation of iodide-bearing GR-Cl into magnetite and ferrous hydroxide resulted in a quantitative release of iodide into the aqueous phase, suggesting that neither transformation product has an affinity for this anionic species.


Assuntos
Cloretos , Óxido Ferroso-Férrico , Óxido Ferroso-Férrico/química , Cloretos/química , Iodetos , Hidróxidos
2.
Environ Sci Technol ; 57(30): 11185-11194, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37460108

RESUMO

In this study, Np(V) retention on Illite du Puy (IdP) was investigated since it is essential for understanding the migration behavior of Np in argillaceous environments. The presence of structural Fe(III) and Fe(II) in IdP was confirmed by Fe K-edge X-ray absorption near-edge structure (XANES) and 57Fe Mössbauer spectroscopy. In batch sorption experiments, a higher Np sorption affinity to IdP was found than to Wyoming smectite or iron-free synthetic montmorillonite. An increase of the relative Np(IV) ratio sorbed onto IdP with decreasing pH was observed by solvent extraction (up to (24 ± 2)% at pH 5, c0(Np) = 10-6 mol/L). Furthermore, up to (33 ± 5)% Np(IV) could be detected in IdP diffusion samples at pH 5. Respective Np M5-edge high-energy resolution (HR-) XANES spectra suggested the presence of Np(IV/V) mixtures and weakened axial bond covalency of the NpO2+ species sorbed onto IdP. Np L3-edge extended X-ray absorption fine structure (EXAFS) analysis showed that significant fractions of Np were coordinated to Fe─O entities at pH 9. This highlights the potential role of Fe(II/III) clay edge sites as a strong Np(V) surface complex partner and points to the partial reduction of sorbed Np(V) to Np(IV) via structural Fe(II).


Assuntos
Compostos Férricos , Minerais , Minerais/química , Bentonita/química , Compostos Ferrosos/química
3.
J Synchrotron Radiat ; 29(Pt 1): 80-88, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985425

RESUMO

The ACT experimental station of the CAT-ACT wiggler beamline at the Karlsruhe Institute of Technology (KIT) Light Source is dedicated to the investigation of radionuclide materials with radioactivities up to 1000000 times the exemption limit by various speciation techniques applying monochromatic X-rays. In this article, the latest technological developments at the ACT station that enable high-resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy for low radionuclide loading samples are highlighted - encompassing the investigation of actinide elements down to 1 p.p.m. concentration - combined with a cryogenic sample environment reducing beam-induced sample alterations. One important part of this development is a versatile gas tight plexiglass encasement ensuring that all beam paths in the five-analyzer-crystal Johann-type X-ray emission spectrometer run within He atmosphere. The setup enables the easy exchange between different experiments (conventional X-ray absorption fine structure, HR-XANES, high-energy or wide-angle X-ray scattering, tender to hard X-ray spectroscopy) and opens up the possibility for the investigation of environmental samples, such as specimens containing transuranium elements from contaminated land sites or samples from sorption and diffusion experiments to mimic the far field of a breached nuclear waste repository.

4.
Inorg Chem ; 60(14): 10585-10595, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34196539

RESUMO

The uptake of iodide and chloride during the synthesis of green rust (GR), the Fe endmember of the layered double hydroxide (LDH) group, was investigated. GR compounds were prepared by aerial oxidation of Fe(OH)2 in suspension, considering various I/Cl ratios at constant ionic strength. Only GR compounds formed in all experiments, and the associated I/Cl ratio increased with that of the starting suspension. No preferential uptake of any halide could be detected, and all compounds had comparable morphology. Furthermore, the height of the interlayer gallery increased with the I/Cl ratio from ∼7.7 Šfor the chloride endmember to ∼8.3 Šfor the iodide endmember, and the observed linear increase was attributed to increasing interlayer iodide content. In all compounds, Fe K-edge X-ray absorption spectroscopy evidenced the presence of sixfold coordinated iron with a Fe2+/Fe3+ ratio of 3, homogeneously distributed within flattened octahedral sites, with six Fe as next-nearest neighbors. The Fe short-range environment was not affected by the interlayer composition, and no halide from the interlayer could be detected. Furthermore, iodide and chloride anions are located in a water-like environment, being loosely bound by weak electrostatic interactions to the octahedral sheet likely above ferric iron. Results consistently hint at the formation of a solid solution between chloride and iodide GR endmembers, certainly facilitated by the crystallization of both compounds in the same space group. This study provides further insights into the ability of LDH to simultaneously accommodate several anionic species of various sizes. The formation of such LDH compounds in a deep geological repository for nuclear waste thus represents a possible retention barrier to the migration to the far field of anionic species like 36Cl- and 129I- mobilized from the waste matrix. The extent of retention in disposal sites will depend, among others, on the availability of GR and on the concentration of competing anions.

5.
Inorg Chem ; 60(16): 12285-12298, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328309

RESUMO

The combination of wet-chemistry experiments (measurements of pH, Eh, and [Tc]) and advanced spectroscopic techniques (K- and L3-edge X-ray absorption fine structure spectroscopy) confirms the formation of a very stable Tc(V)-gluconate complex under anoxic conditions. In the presence of gluconate and an excess of Sn(II) (at pe + pH ≈ 2), technetium forms a very stable Tc(IV)-gluconate complex significantly enhancing the solubility defined by TcO2(s) in hyperalkaline gluconate-free systems. A new setup for "tender" X-ray spectroscopy (spectral range, ∼2-5 keV) in transmission or total fluorescence yield detection mode based on a He flow cell has been developed at the INE Beamline for radionuclide science (KIT light source). This setup allows handling of radioactive specimens with total activities up to one million times the exemption limit. For the first time, Tc L3-edge measurements (∼2.677 keV) of Tc species in liquid (aqueous) media are reported, clearly outperforming conventional K-edge spectroscopy as a tool to differentiate Tc oxidation states and coordination environments. The coupling of L3-edge X-ray absorption near-edge spectroscopy measurements and relativistic multireference ab initio methods opens new perspectives in the definition of chemical and thermodynamic models for systems of relevance in the context of nuclear waste disposal, environmental, and pharmaceutical applications.

6.
Inorg Chem ; 59(1): 8-22, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31834788

RESUMO

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M4,5-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L3-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpVO2CO3](cr), K3[NpVO2(CO3)2](cr), and K3Na[UVIO2(CO3)3](cr) are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M5-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

7.
Anal Chem ; 91(7): 4585-4591, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30843388

RESUMO

In the frame of studies on the safe disposal of nuclear waste, there is a great interest for understanding the migration behavior of 99Tc. 99Tc originating from nuclear energy production and global fallout shows environmental levels down to 107 atoms/g of soil (∼2 fg/g). Extremely low concentrations are also expected in groundwater after diffusion of 99Tc through the bentonite constituting the technical barrier for nuclear waste disposal. The main limitation to the sensitivity of the mass spectrometric analysis of 99Tc is the background of its stable isobar 99Ru. For ultratrace analysis, the Accelerator Mass Spectrometry (AMS) setup of the Technical University of Munich using a Gas-Filled Analyzing Magnet System (GAMS) and a 14 MV Tandem accelerator is greatly effective in suppressing this interference. In the present study, the GAMS setup is used for the analysis of 99Tc in samples of the seawater reference material IAEA-443, a peat bog lake, and groundwater from an experiment of in situ diffusion through bentonite in the controlled zone of the Grimsel Test Site (GTS) within the Colloid Formation and Migration (CFM) project. With an adapted chemical preparation procedure, measurements of 99Tc concentrations at the fg/g levels with a sensitivity down to 0.5 fg are accomplished in notably small natural water samples. The access to these low concentration levels allows for the long-term monitoring of in situ tracer tests over several years and for the determination of environmental levels of 99Tc in small samples.


Assuntos
Magnetismo , Espectrometria de Massas/métodos , Tecnécio/análise , Água Subterrânea/análise , Lagos/química , Resíduos Radioativos/análise , Poluentes Radioativos da Água/análise
8.
Anal Chem ; 89(13): 7182-7189, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28598602

RESUMO

The multiactinide analysis with accelerator mass spectrometry (AMS) was applied to samples collected from the run 13-05 of the Colloid Formation and Migration (CFM) experiment at the Grimsel Test Site (GTS). In this in situ radionuclide tracer test, the environmental behavior of 233U, 237Np, 242Pu, and 243Am was investigated in a water conductive shear zone under conditions relevant for a nuclear waste repository in crystalline rock. The concentration of the actinides in the GTS groundwater was determined with AMS over 6 orders of magnitude from ∼15 pg/g down to ∼25 ag/g. Levels above 10 fg/g were investigated with both sector field inductively coupled plasma mass spectrometry (SF-ICPMS) and AMS. Agreement within a relative uncertainty of 50% was found for 237Np, 242Pu, and 243Am concentrations determined with the two analytical methods. With the extreme sensitivity of AMS, the long-term release and retention of the actinides was investigated over 8 months in the tailing of the breakthrough curve of run 13-05 as well as in samples collected up to 22 months after. Furthermore, the evidence of masses 241 and 244 u in the CFM samples most probably representing 241Am and 244Pu employed in a previous tracer test demonstrated the analytical capability of AMS for in situ studies lasting more than a decade.

9.
Inorg Chem ; 56(22): 13982-13990, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087699

RESUMO

Pu(III), Pu(IV), and a higher oxidation state of Pu, likely Pu(VI), are for the first time characterized simultaneously present in a borosilicate glass using Pu M5 edge high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We illustrate that the method can be very efficiently used to determine Pu oxidation states, which control the solubility limit of Pu in a glass matrix. HR-XANES results show that the addition of excess Si3N4 is not sufficient for complete reduction of Pu to Pu(III), which has a relatively high solubility limit (9-22 wt % Pu) due to its network-modifying behavior in glasses. We provide evidence that the initially added Pu(VI) might be partly preserved during vitrification at 1200/1400 °C in Ar atmosphere. Pu(VI) could be very advantageous for vitrification of Pu-rich wastes, since it might reach solubility limits of 40 wt % comparable to U(VI).

10.
Environ Sci Technol ; 51(4): 2217-2225, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28094921

RESUMO

Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).


Assuntos
Nanopartículas de Magnetita , Urânio/química , Oxirredução , Espectroscopia Fotoeletrônica , Espectroscopia por Absorção de Raios X
11.
Environ Sci Technol ; 50(4): 2092-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26793996

RESUMO

The geochemical behavior of Pu strongly depends on its redox speciation. In this study, we investigated Pu sorption onto Na-illite, a relevant component of potential host rocks for high-level nuclear waste repositories, under anaerobic conditions. When contacting Pu (85% Pu(IV), 11% Pu(V), and 4% Pu(III); 8 × 10(-11) < [Pu]tot/M < 10(-8)) with illite in 0.1 M NaCl at pH between 3 and 10, Pu uptake was characterized by log Rd > 4 (Rd: distribution coefficient in L kg(-1)). Small amounts of aqueous Pu(V) were detected in solution on contact with illite after 1 week, which is not expected to be stable at the measured redox potentials (Eh) in our experiments. This observation suggests time-dependent reduction of Pu(V) to Pu(IV). After one year, log Rd values had increased compared to those after 1 week due to the reduction of weakly adsorbing Pu(V). For pH < 5, Pu(IV) and Pu(III) coexisted in solution under our experimental conditions, showing that Pu(IV) reduction to Pu(III) occurred in the illite suspension. Taking (i) surface complexation constants determined for Eu(III)-illite interaction (with redox-insensitive Eu(III) as a chemical analogue to Pu(III)), (ii) the known constant for Pu(III)-Pu(IV) redox transition, and (iii) measured Eh and pH, overall Pu uptake was well-predicted.


Assuntos
Minerais/química , Plutônio/química , Resíduos Radioativos , Adsorção , Európio/química , Oxirredução , Cloreto de Sódio/química , Instalações de Eliminação de Resíduos
12.
Anal Chem ; 87(11): 5766-73, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25938849

RESUMO

(236)U, (237)Np, and Pu isotopes and (243)Am were determined in ground- and seawater samples at levels below ppq (fg/g) with a maximum sample size of 250 g. Such high sensitivity was possible by using accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) with extreme selectivity and recently improved efficiency and a significantly simplified separation chemistry. The use of nonisotopic tracers was investigated in order to allow for the determination of (237)Np and (243)Am, for which isotopic tracers either are rarely available or suffer from various isobaric mass interferences. In the present study, actinides were concentrated from the sample matrix via iron hydroxide coprecipitation and measured sequentially without previous chemical separation from each other. The analytical method was validated by the analysis of the Reference Material IAEA 443 and was applied to groundwater samples from the Colloid Formation and Migration (CFM) project at the deep underground rock laboratory of the Grimsel Test Site (GTS) and to natural water samples affected solely by global fallout. While the precision of the presented analytical method is somewhat limited by the use of nonisotopic spikes, the sensitivity allows for the determination of ∼10(5) atoms in a sample. This provides, e.g., the capability to study the long-term release and retention of actinide tracers in field experiments as well as the transport of actinides in a variety of environmental systems by tracing contamination from global fallout.

13.
Anal Chem ; 87(19): 9786-94, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26333389

RESUMO

The long-term safety assessment for nuclear waste repositories requires a detailed understanding of actinide (geo)chemistry. Advanced analytical tools are required to gain insight into actinide speciation in a given system. The geochemical conditions in the vicinity of a nuclear repository control the redox state of radionuclides, which in turn has a strong impact on their mobility. Besides the long-lived radionuclides plutonium (Pu) and neptunium (Np), which are key elements in high level nuclear waste, iron (Fe) represents a main component in natural systems controlling redox-related geochemical processes. Measuring the oxidation state distribution for redox sensitive radionuclides and other metal ions is challenging at trace concentrations below the detection limit of most available spectroscopic methods (≥10(-6) M). Consequently, ultrasensitive new analytical techniques are required. Capillary electrophoresis (CE) is a suitable separation method for metal cations. CE hyphenated to inductively coupled plasma sector field mass spectrometry (CE-ICP-SF-MS) was used to measure the redox speciation of Pu (III, IV, V, VI), Np (IV, V, VI), and Fe (II, III) at concentrations lower than 10(-7) M. CE coupling and separation parameters such as sample gas pressure, make up flow rate, capillary position, auxiliary gas flow, as well as the electrolyte system were optimized to obtain the maximum sensitivity. We obtain detection limits of 10(-12) M for Np and Pu. The various oxidation state species of Pu and Np in different samples were separated by application of an acetate-based electrolyte system. The separation of Fe (II) and Fe (III) was investigated using different organic complexing ligands, EDTA, and o-phenanthroline. For the Fe redox system, a limit of detection of 10(-8) M was calculated. By applying this analytical system to sorption studies, we were able to underline previously published results for the sorption behavior of Np in highly diluted concentrations, and we monitored the time-dependent reduction of Pu(VI) by Fe(II). This study clearly shows that CE-ICP-SF-MS is a suitable separation method for the redox states of Pu, Np, and Fe.

14.
Sci Rep ; 13(1): 5877, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041164

RESUMO

Mobility and bioavailability of radionuclides in the environment strongly depend on their aqueous speciation, adsorption behavior and the solubility of relevant solid phases. In the present context, we focus on naturally occurring Th-232 at a location in central Sri Lanka presenting high background radiation levels. Four different soil samples were characterized using X-ray Absorption Spectroscopy (XAS) at the Th L3-edge (16.3 keV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy. X-ray Absorption Near Edge Structure (XANES) spectra are applied as a fingerprint indication for Th existing in different chemical environments. Linear combination fitting (LCF) of the Extended X-ray Absorption Fine Structure (EXAFS) data involving reference Th-monazite (phosphate) and thorianite (oxide) compounds suggested that Th is mostly present as Th-phosphate (76 ± 2%) and Th-oxide (24 ± 2%), even though minor amounts of thorite (silicate) were also detected by SEM-EDX. Further studies on selected individual particles using micro-focus X-ray Fluorescence (µ-XRF) and micro-X-ray Absorption Spectroscopy (µ-XAS) along with SEM-EDX elemental mapping provided information about the nature of Th-bearing mineral particles regarding mixed phases. This is the first study providing quantitative and XAS based speciation information on Th-mineral phases in soil samples from Sri Lanka.

15.
Front Chem ; 10: 1042709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458154

RESUMO

The impact of temperature on a freshly precipitated ThO2(am, hyd) solid phase was investigated using a combination of undersaturation solubility experiments and a multi-method approach for the characterization of the solid phase. XRD and EXAFS confirm that ageing of ThO2(am, hyd) at T = 80°C promotes a significant increase of the particle size and crystallinity. TG-DTA and XPS support that the ageing process is accompanied by an important decrease in the number of hydration waters/hydroxide groups in the original amorphous Th(IV) hydrous oxide. However, while clear differences between the structure of freshly precipitated ThO2(am, hyd) and aged samples were observed, the characterization methods used in this work are unable to resolve clear differences between solid phases aged for different time periods or at different pH values. Solubility experiments conducted at T = 22°C with fresh and aged Th(IV) solid phases show a systematic decrease in the solubility of the solid phases aged at T = 80°C. In contrast to the observations gained by solid phase characterization, the ageing time and ageing pH significantly affect the solubility measured at T = 22°C. These observations can be consistently explained considering a solubility control by the outermost surface of the ThO2(s, hyd) solid, which cannot be properly probed by any of the techniques considered in this work. Solubility data are used to derive the thermodynamic properties (log *K°s,0, Δf G°m) of the investigated solid phases, and discussed in terms of particle size using the Schindler equation. These results provide new insights on the interlink between solubility, structure, surface and thermodynamics in the ThO2(s, hyd)-H2O(l) system, with special emphasis on the transformation of the amorphous hydrous/hydroxide solid phases into the thermodynamically stable crystalline oxides.

16.
Anal Chim Acta ; 1202: 339636, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341521

RESUMO

The recently emerged actinide (An) M4,5-edge high-energy resolution X-ray absorption near-edge structure (HR-XANES) technique has proven to be very powerful for oxidation state studies of actinides. In this work, for the first time, Np M5-edge HR-XANES was applied to study Np sorption on illite. By improving the experimental conditions, notably by operation of the spectrometer under He atmosphere, it was possible to measure Np M5-edge HR-XANES spectra of a sample with ≈ 1 µg Np/g illite (1 ppm). This is 30-2000 times lower than Np loadings on mineral surfaces usually investigated by X-ray absorption spectroscopy. A newly designed cryogenic configuration enabled sample temperatures of 141.2 ± 1.5 K and successfully prevented beam-induced changes of the Np oxidation state. The described approach paves the way for the examination of coupled redox/solid-liquid interface reactions of actinide ions via An M4,5-edge HR-XANES spectroscopy at low metal ion concentrations, which are of specific relevance for contaminated sites and nuclear waste disposal studies.


Assuntos
Espectroscopia por Absorção de Raios X , Argila , Oxirredução , Temperatura , Espectroscopia por Absorção de Raios X/métodos , Raios X
18.
J Colloid Interface Sci ; 561: 708-718, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767395

RESUMO

HYPOTHESIS: This study investigates the adsorption of americium and its chemical analogue europium on magnetite, which is expected to form as a major long-term steel canister corrosion product under anoxic and highly saline conditions. EXPERIMENTS: The sorption of europium on magnetite (solid/liquid ratio = 0.5 g/L) was investigated batch wise in NaCl brines with ionic strength I = 1 m, 3.5 m, and 6.67 m, as a function of pHm for two europium concentrations (6 × 10-10m, 1.2 × 10-5m). Information on the chemical nature of the surface species was obtained by X-ray absorption spectroscopy (XAS) at the americium L3-edge. FINDINGS: Retention of europium by magnetite of >99.5% was found above pHm 6.4 for all ionic strengths for europium concentration of 6 × 10-10m. No ionic strength effect was observed in this pHm range. At 1.2 × 10-5m europium concentration, 95 ± 4% sorption was found above pHm 7.5 for I = 1 m and above pHm 8.0 for I = 3.5 m and 6.67 m. A small ionic strength effect was observed in this case. X-ray absorption spectroscopy (XAS) results are consistent with the batch sorption experiment outcomes, showing an insignificant effect of ionic strength on the pHm dependent sorption. Results from potentiometric titrations of the solid phase, batch sorption experiments and spectroscopy were interpreted consistently with a charge distribution multi-site (CD-MUSIC) triple layer surface complexation model assuming surface coordination of the metal ion via a tridentate binding mode.

20.
Environ Sci Pollut Res Int ; 26(6): 5282-5293, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29667060

RESUMO

Transformation products of two-line ferrihydrite associated with Lu(III) were studied after 12 years of aging using aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), high-efficiency energy-dispersive X-ray spectroscopy (EDXS), and density functional theory (DFT). The transformation products consisted of hematite nanoparticles with overgrown goethite needles. High-efficiency STEM-EDXS revealed that Lu is only associated with goethite needles, and atomic-resolution HAADF-STEM reveals structural incorporation of Lu within goethite, partially replacing structural Fe sites. This finding corroborates those recently obtained by AsFlFFF and EXAFS spectroscopy on the same sample (Finck et al. 2018). DFT calculations indicate that Lu incorporation within goethite or hematite are almost equally likely, suggesting that experimental parameters such as temperature and reaction time which affect reaction kinetics, play important roles in determining the Lu uptake. It seems likely that these results may be transferable to predict the behavior of chemically homologous trivalent actinides.


Assuntos
Compostos Férricos/química , Lutécio/química , Adsorção , Teoria da Densidade Funcional , Concentração de Íons de Hidrogênio , Compostos de Ferro/química , Cinética , Microscopia Eletrônica de Transmissão e Varredura , Minerais/química , Espectrometria por Raios X , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa