RESUMO
BRD4 is a BET family protein that binds acetylated histones and regulates transcription. BET/BRD4 inhibitors block blood cancer growth and inflammation and serve as a new therapeutic strategy. However, the biological role of BRD4 in normal hematopoiesis and inflammation is not fully understood. Analysis of Brd4 conditional knockout (KO) mice showed that BRD4 is required for hematopoietic stem cell expansion and progenitor development. Nevertheless, BRD4 played limited roles in macrophage development and inflammatory response to LPS ChIP-seq analysis showed that despite its limited importance, BRD4 broadly occupied the macrophage genome and participated in super-enhancer (SE) formation. Although BRD4 is critical for SE formation in cancer, BRD4 was not required for macrophage SEs, as KO macrophages created alternate, BRD4-less SEs that compensated BRD4 loss. This and additional mechanisms led to the retention of inflammatory responses in macrophages. Our results illustrate a context-dependent role of BRD4 and plasticity of epigenetic regulation.
Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Macrófagos Peritoneais/imunologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
In EAE, a mouse model of multiple sclerosis, immunization with MOG autoantigen results in the generation of Th1/Th17 T cells in the periphery. MOG-specific T cells then invade into the central nervous system (CNS), resulting in neuronal demyelination. Microglia, innate immune cells in the CNS are known to regulate various neuronal diseases. However, the role of microglia in EAE has remained elusive. BRD4 is a BET protein expressed in microglia, whether BRD4 in microglia contributes to EAE has not been determined. We show that EAE pathology was markedly reduced with microglia-specific Brd4 conditional knockout (cKO). In these mice, microglia- T cell interactions were greatly reduced, leading to the lack of T cell reactivation. Microglia specific transcriptome data showed downregulation of genes required for interaction with and reactivation of T cells in Brd4 cKO samples. In summary, BRD4 plays a critical role in regulating microglia function in normal and EAE CNS. Summary: This study demonstrates that in a EAE model, microglia-specific Brd4 conditional knockout mice were defective in expressing genes required for microglia- T cells interaction and those involved in neuroinflammation, and demyelination resulting in fewer CNS T cell invasion and display marked reduction in EAE pathology.
RESUMO
The transcription factor TFIID components TAF7 and TAF1 regulate eukaryotic transcription initiation. TAF7 regulates transcription initiation of TAF1-dependent genes by binding to the acetyltransferase (AT) domain of TAF1 and inhibiting the enzymatic activity that is essential for transcription. TAF7 is released from the TAF1-TFIID complex upon completion of preinitiation complex assembly, allowing transcription to initiate. However, not all transcription is TAF1-dependent, and the role of TAF7 in regulating TAF1-independent transcription has not been defined. The IFNγ-induced transcriptional co-activator CIITA activates MHC class I and II genes, which are vital for immune responses, in a TAF1-independent manner. Activation by CIITA depends on its intrinsic AT activity. We now show that TAF7 binds to CIITA and inhibits its AT activity, thereby repressing activated transcription. Consistent with this TAF7 function, siRNA-mediated depletion of TAF7 resulted in increased CIITA-dependent transcription. A more global role for TAF7 as a regulator of transcription was revealed by expression profiling analysis: expression of 30-40% of genes affected by TAF7 depletion was independent of either TAF1 or CIITA. Surprisingly, although TAF1-dependent transcripts were largely down-regulated by TAF7 depletion, TAF1-independent transcripts were predominantly up-regulated. We conclude that TAF7, until now considered only a TFIID component and regulator of TAF1-dependent transcription, also regulates TAF1-independent transcription.
Assuntos
Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Transativadores/metabolismo , Fator de Transcrição TFIID/fisiologia , Transcrição Gênica , Animais , Células CHO , Cricetinae , Cricetulus , Drosophila , Perfilação da Expressão Gênica , Células HeLa , Humanos , Interferon gama/metabolismo , RNA Interferente Pequeno/metabolismoRESUMO
Transcription consists of a series of highly regulated steps: assembly of the preinitiation complex (PIC) at the promoter, initiation, elongation, and termination. PIC assembly is nucleated by TFIID, a complex composed of the TATA-binding protein (TBP) and a series of TBP-associated factors (TAFs). One component, TAF7, is incorporated in the PIC through its interaction with TFIID but is released from TFIID upon transcription initiation. We now report that TAF7 interacts with the transcription factors, TFIIH and P-TEFb, resulting in the inhibition of their Pol II CTD kinase activities. Importantly, in in vitro transcription reactions, TAF7 inhibits steps after PIC assembly and formation of the first phosphodiester bonds. Further, in vivo TAF7 coelongates with P-TEFb and Pol II downstream of the promoter. We propose a model in which TAF7 contributes to the regulation of the transition from PIC assembly to initiation and elongation.
Assuntos
Regulação da Expressão Gênica , Fator B de Elongação Transcricional Positiva/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/metabolismo , Fator de Transcrição TFIIH/metabolismo , Linhagem Celular , Humanos , Complexos Multiproteicos , Ligação Proteica , Fator de Transcrição TFIID/fisiologia , Transcrição Gênica , TransfecçãoRESUMO
The TFIID component, TAF7, has been extensively characterized as essential for transcription and is critical for cell proliferation and differentiation. Here, we report that TAF7 is a previously unknown RNA chaperone that contributes to the regulation of protein synthesis. Mechanistically, TAF7 binds RNAs in the nucleus and delivers them to cytoplasmic polysomes. A broad spectrum of target RNA species, including the HIV-1 transactivation response element, binds TAF7 through consensus CUG motifs within the 3' untranslated region. Export to the cytoplasm depends on a TAF7 nuclear export signal and occurs by an exportin 1dependent pathway. Notably, disrupting either TAF7's RNA binding or its export from the nucleus results in retention of target messenger RNAs in the nucleus and reduced levels of the protein products of TAF7-target RNAs. Thus, TAF7, an essential transcription factor, plays a key role in the regulation of RNA translation, thereby potentially connecting these processes.
RESUMO
The bromodomain protein 4 (BRD4) is an atypical kinase and histone acetyl transferase (HAT) that binds to acetylated histones and contributes to chromatin remodeling and early transcriptional elongation. During transcription, BRD4 travels with the elongation complex. Since most alternative splicing events take place co-transcriptionally, we asked if BRD4 plays a role in regulating alternative splicing. We report that distinct patterns of alternative splicing are associated with a conditional deletion of BRD4 during thymocyte differentiation in vivo. Similarly, the depletion of BRD4 in T cell acute lymphoblastic leukemia (T-ALL) cells alters patterns of splicing. Most alternatively spliced events affected by BRD4 are exon skipping. Importantly, BRD4 interacts with components of the splicing machinery, as assessed by both immunoprecipitation (IP) and proximity ligation assays (PLAs), and co-localizes on chromatin with the splicing regulator, FUS. We propose that BRD4 contributes to patterns of alternative splicing through its interaction with the splicing machinery during transcription elongation.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Timócitos/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Éxons/genética , Humanos , Imunoprecipitação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genéticaRESUMO
T cell differentiation in the thymus proceeds in an ordered sequence of developmental events characterized by variable expression of CD4 and CD8 coreceptors. Here, we report that immature single-positive (ISP) thymocytes are molecularly distinct from all other T cell populations in the thymus in their expression of a gene profile that is dependent on the transcription factor BRD4. Conditional deletion of BRD4 at various stages of thymic differentiation reveals that BRD4 selectively regulates the further differentiation of ISPs by targeting cell cycle and metabolic pathways, but it does not affect the extensive proliferation that results in the generation of ISPs. These studies lead to the conclusion that the ISP subpopulation is not a hybrid transitional state but a molecularly distinct subpopulation that is selectively dependent on BRD4.
Assuntos
Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Proteínas Nucleares/metabolismo , Timócitos/citologia , Fatores de Transcrição/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Deleção de Genes , Glicólise , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Linfócitos T Reguladores/metabolismo , Timócitos/metabolismoRESUMO
Transcription of major histocompatibility complex (MHC) class I genes is regulated by both tissue-specific (basal) and hormone/cytokine (activated) mechanisms. Although promoter-proximal regulatory elements have been characterized extensively, the role of the core promoter in mediating regulation has been largely undefined. We report here that the class I core promoter consists of distinct elements that are differentially utilized in basal and activated transcription pathways. These pathways recruit distinct transcription factor complexes to the core promoter elements and target distinct transcription initiation sites. Class I transcription initiates at four major sites within the core promoter and is clustered in two distinct regions: "upstream" (-14 and -18) and "downstream" (+12 and +1). Basal transcription initiates predominantly from the upstream start site region and is completely dependent upon the general transcription factor TAF1 (TAF(II)250). Activated transcription initiates predominantly from the downstream region and is TAF1 (TAF(II)250) independent. USF1 augments transcription initiating through the upstream start sites and is dependent on TAF1 (TAF(II)250), a finding consistent with its role in regulating basal class I transcription. In contrast, transcription activated by the interferon mediator CIITA is independent of TAF1 (TAF(II)250) and focuses initiation on the downstream start sites. Thus, basal and activated transcriptions of an MHC class I gene target distinct core promoter domains, nucleate distinct transcription initiation complexes and initiate at distinct sites within the promoter. We propose that transcription initiation at the core promoter is a dynamic process in which the mechanisms of core promoter function differ depending on the cellular environment.
Assuntos
Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Proteínas Nucleares , Regiões Promotoras Genéticas , Transcrição Gênica , Animais , Linhagem Celular , Cloranfenicol O-Acetiltransferase/metabolismo , Cricetinae , Análise Mutacional de DNA , Células HeLa , Antígenos de Histocompatibilidade Classe I/metabolismo , Histona Acetiltransferases , Humanos , Insetos , Camundongos , Plasmídeos/metabolismo , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transativadores/metabolismo , Fator de Transcrição TFIID/metabolismo , TransfecçãoRESUMO
Bromodomain protein 4 (BRD4) is a transcriptional and epigenetic regulator that plays a pivotal role in cancer and inflammatory diseases. BRD4 binds and stays associated with chromatin during mitosis, bookmarking early G1 genes and reactivating transcription after mitotic silencing. BRD4 plays an important role in transcription, both as a passive scaffold via its recruitment of vital transcription factors and as an active kinase that phosphorylates RNA polymerase II, directly and indirectly regulating transcription. Through its HAT activity, BRD4 contributes to the maintenance of chromatin structure and nucleosome clearance. This review summarizes the known functions of BRD4 and proposes a model in which BRD4 actively coordinates chromatin structure and transcription.
Assuntos
Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Acetilação , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular , Diferenciação Celular , Cromatina/metabolismo , Cromatina/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/metabolismo , Humanos , Modelos Genéticos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/química , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Proteínas de Fusão Oncogênica/fisiologia , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismoRESUMO
Bromodomain protein 4 (BRD4) is a chromatin-binding protein implicated in cancer and autoimmune diseases that functions as a scaffold for transcription factors at promoters and super-enhancers. Although chromatin decompaction and transcriptional activation of target genes are associated with BRD4 binding, the mechanisms involved are unknown. We report that BRD4 is a histone acetyltransferase (HAT) that acetylates histones H3 and H4 with a pattern distinct from those of other HATs. Both mouse and human BRD4 have intrinsic HAT activity. Importantly, BRD4 acetylates H3 K122, a residue critical for nucleosome stability, thus resulting in nucleosome eviction and chromatin decompaction. Nucleosome clearance by BRD4 occurs genome wide, including at its targets MYC, FOS and AURKB (Aurora B kinase), resulting in increased transcription. These findings suggest a model wherein BRD4 actively links chromatin structure and transcription: it mediates chromatin decompaction by acetylating and evicting nucleosomes at target genes, thereby activating transcription.
Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Sítios de Ligação , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Camundongos , Timo/metabolismoRESUMO
TAF7, a component of the TFIID complex, controls the first steps of transcription. It interacts with and regulates the enzymatic activities of transcription factors that regulate RNA polymerase II progression. Its diverse functions in transcription initiation are consistent with its essential role in cell proliferation.
Assuntos
Regulação da Expressão Gênica , Fator de Transcrição TFIID/metabolismo , Iniciação da Transcrição Genética , Animais , Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Humanos , RNA Polimerase II/metabolismo , Fatores Associados à Proteína de Ligação a TATARESUMO
TAF7, a component of the TFIID complex that nucleates the assembly of transcription preinitiation complexes, also independently interacts with and regulates the enzymatic activities of other transcription factors, including P-TEFb, TFIIH, and CIITA, ensuring an orderly progression in transcription initiation. Since not all TAFs are required in terminally differentiated cells, we examined the essentiality of TAF7 in cells at different developmental stages in vivo. Germ line disruption of the TAF7 gene is embryonic lethal between 3.5 and 5.5 days postcoitus. Mouse embryonic fibroblasts with TAF7 deleted cease transcription globally and stop proliferating. In contrast, whereas TAF7 is essential for the differentiation and proliferation of immature thymocytes, it is not required for subsequent, proliferation-independent differentiation of lineage committed thymocytes or for their egress into the periphery. TAF7 deletion in peripheral CD4 T cells affects only a small number of transcripts. However, T cells with TAF7 deleted are not able to undergo activation and expansion in response to antigenic stimuli. These findings suggest that TAF7 is essential for proliferation but not for proliferation-independent differentiation.
Assuntos
Diferenciação Celular , Proliferação de Células , Linfócitos T/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Camundongos , Camundongos Transgênicos , Linfócitos T/citologia , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Transcrição GênicaRESUMO
To examine the role of chromatin in transcriptional regulation of the major histocompatibility complex (MHC) class I gene, we determined nucleosome occupancy and positioning, histone modifications, and H2A.Z occupancy across its regulatory region in murine tissues that have widely different expression levels. Surprisingly, nucleosome occupancy and positioning were indistinguishable between the spleen, kidney, and brain. In all three tissues, the 200 bp upstream of the transcription start site had low nucleosome occupancy. In contrast, nuclease hypersensitivity, histone modifications, and H2A.Z occupancy showed tissue-specific differences. Thus, tissue-specific differences in MHC class I transcription correlate with histone modifications and not nucleosomal organization. Further, activation of class I transcription by gamma interferon or its inhibition by alpha-amanitin did not alter nucleosome occupancy, positioning, nuclease hypersensitivity, histone modifications, or H2A.Z occupancy in any of the tissues examined. Thus, chromatin remodeling was not required to dynamically modulate transcriptional levels. These findings suggest that the MHC class I promoter remains poised and accessible to rapidly respond to infection and environmental cues.
Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Genes MHC Classe I , Histonas/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Cromatina/genética , Interferon gama/metabolismo , Rim/citologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/citologia , Baço/metabolismo , Distribuição Tecidual , Sítio de Iniciação de Transcrição , Transcrição Gênica , TransgenesRESUMO
Transcription consists of a series of highly regulated steps: assembly of a preinitiation complex (PIC) at the promoter nucleated by TFIID, followed by initiation, elongation, and termination. The present study has focused on the role of the TFIID component, TAF7, in regulating transcription initiation. In TFIID, TAF7 binds to TAF1 and inhibits its intrinsic acetyl transferase activity. We now report that although TAF7 remains bound to TAF1 and associated with TFIID during the formation of the PIC, TAF7 dissociates from the PIC upon transcription initiation. Entry of polymerase II into the assembling PIC is associated with TAF1 and TAF7 phosphorylation, coincident with TAF7 release. We propose that the TFIID composition is dynamic and that TAF7 functions as a check-point regulator suppressing premature transcription initiation until PIC assembly is complete.
Assuntos
Genes cdc/fisiologia , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , DNA/metabolismo , Histona Acetiltransferases , Humanos , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/fisiologia , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismoRESUMO
MHC class I expression is subject to both tissue-specific and hormonal regulatory mechanisms. Consequently, levels of expression vary widely among tissues, with the highest levels of class I occurring in the lymphoid compartment, in T cells and B cells. Although the high class I expression in B cells is known to involve the B cell enhanceosome, the molecular basis for high constitutive class I expression in T cells has not been explored. T cell-specific genes, such as TCR genes, are regulated by a T cell enhanceosome consisting of RUNX1, CBFbeta, LEF1, and Aly. In this report, we demonstrate that MHC class I gene expression is enhanced by the T cell enhanceosome and results from a direct interaction of the RUNX1-containing complex with the class I gene in vivo. T cell enhanceosome activation of class I transcription is synergistic with CIITA-mediated activation and targets response elements distinct from those targeted by CIITA. These findings provide a molecular basis for the high levels of MHC class I in T cells.