Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(3): e2216789120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36634133

RESUMO

Urbanization drastically transforms landscapes, resulting in fragmentation, degradation, and the loss of local biodiversity. Yet, urban environments also offer opportunities to observe rapid evolutionary change in wild populations that survive and even thrive in these novel habitats. In many ways, cities represent replicated "natural experiments" in which geographically separated populations adaptively respond to similar selection pressures over rapid evolutionary timescales. Little is known, however, about the genetic basis of adaptive phenotypic differentiation in urban populations nor the extent to which phenotypic parallelism is reflected at the genomic level with signatures of parallel selection. Here, we analyzed the genomic underpinnings of parallel urban-associated phenotypic change in Anolis cristatellus, a small-bodied neotropical lizard found abundantly in both urbanized and forested environments. We show that phenotypic parallelism in response to parallel urban environmental change is underlain by genomic parallelism and identify candidate loci across the Anolis genome associated with this adaptive morphological divergence. Our findings point to polygenic selection on standing genetic variation as a key process to effectuate rapid morphological adaptation. Identified candidate loci represent several functions associated with skeletomuscular development, morphology, and human disease. Taken together, these results shed light on the genomic basis of complex morphological adaptations, provide insight into the role of contingency and determinism in adaptation to novel environments, and underscore the value of urban environments to address fundamental evolutionary questions.


Assuntos
Lagartos , Animais , Humanos , Lagartos/genética , Ecossistema , Adaptação Fisiológica/genética , Cidades , Genoma/genética , Evolução Biológica
2.
Nature ; 560(7716): 88-91, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046104

RESUMO

Hurricanes are catastrophically destructive. Beyond their toll on human life and livelihoods, hurricanes have tremendous and often long-lasting effects on ecological systems1,2. Despite many examples of mass mortality events following hurricanes3-5, hurricane-induced natural selection has not previously been demonstrated. Immediately after we finished a survey of Anolis scriptus-a common, small-bodied lizard found throughout the Turks and Caicos archipelago-our study populations were battered by Hurricanes Irma and Maria. Shortly thereafter, we revisited the populations to determine whether morphological traits related to clinging capacity had shifted in the intervening six weeks and found that populations of surviving lizards differed in body size, relative limb length and toepad size from those present before the storm. Our serendipitous study, which to our knowledge is the first to use an immediately before and after comparison6 to investigate selection caused by hurricanes, demonstrates that hurricanes can induce phenotypic change in a population and strongly implicates natural selection as the cause. In the decades ahead, as extreme climate events are predicted to become more intense and prevalent7,8, our understanding of evolutionary dynamics needs to incorporate the effects of these potentially severe selective episodes9-11.


Assuntos
Tempestades Ciclônicas , Desastres , Lagartos/anatomia & histologia , Seleção Genética , Animais , Tamanho Corporal , Extremidades/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Úmero/anatomia & histologia , Ilhas , Masculino , Índias Ocidentais
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654747

RESUMO

Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.


Assuntos
Lagartos/genética , Seleção Genética , Animais , Variação Genética , Espécies Introduzidas , Hibridização de Ácido Nucleico
4.
Proc Natl Acad Sci U S A ; 117(19): 10429-10434, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341144

RESUMO

Extreme climate events such as droughts, cold snaps, and hurricanes can be powerful agents of natural selection, producing acute selective pressures very different from the everyday pressures acting on organisms. However, it remains unknown whether these infrequent but severe disruptions are quickly erased by quotidian selective forces, or whether they have the potential to durably shape biodiversity patterns across regions and clades. Here, we show that hurricanes have enduring evolutionary impacts on the morphology of anoles, a diverse Neotropical lizard clade. We first demonstrate a transgenerational effect of extreme selection on toepad area for two populations struck by hurricanes in 2017. Given this short-term effect of hurricanes, we then asked whether populations and species that more frequently experienced hurricanes have larger toepads. Using 70 y of historical hurricane data, we demonstrate that, indeed, toepad area positively correlates with hurricane activity for both 12 island populations of Anolis sagrei and 188 Anolis species throughout the Neotropics. Extreme climate events are intensifying due to climate change and may represent overlooked drivers of biogeographic and large-scale biodiversity patterns.


Assuntos
Lagartos/anatomia & histologia , Seleção Genética/fisiologia , Animais , Biodiversidade , Evolução Biológica , Clima , Mudança Climática/estatística & dados numéricos , Tempestades Ciclônicas/estatística & dados numéricos , Desastres/estatística & dados numéricos , Ecossistema , Ilhas , Filogenia , Filogeografia , Dinâmica Populacional/estatística & dados numéricos , Dedos do Pé/anatomia & histologia
5.
J Evol Biol ; 35(5): 680-692, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35535762

RESUMO

Animal signals evolve in an ecological context. Locally adapting animal sexual signals can be especially important for initiating or reinforcing reproductive isolation during the early stages of speciation. Previous studies have demonstrated that dewlap colour in Anolis lizards can be highly variable between populations in relation to both biotic and abiotic adaptive drivers at relatively large geographical scales. Here, we investigated differentiation of dewlap coloration among habitat types at a small spatial scale, within multiple islands of the West Indies, to test the hypothesis that similar local adaptive processes occur over smaller spatial scales. We explored variation in dewlap coloration in the most widespread species of anole, Anolis sagrei, across three characteristic habitats spanning the Bahamas and the Cayman Islands, namely beach scrub, primary coppice forest and mangrove forest. Using reflectance spectrometry paired with supervised machine learning, we found significant differences in spectral properties of the dewlap between habitats within small islands, sometimes over very short distances. Passive divergence in dewlap phenotype associated with isolation-by-distance did not seem to explain our results. On the other hand, these habitat-specific dewlap differences varied in magnitude and direction across islands, and thus, our primary test for adaptation-parallel responses across islands-was not supported. We suggest that neutral processes or selection could be involved in several ways, including sexual selection. Our results shed new light on the scale at which signal colour polymorphism can be maintained in the presence of gene flow, and the relative role of local adaptation and other processes in driving these patterns of dewlap colour variation across islands.


Assuntos
Lagartos , Animais , Cor , Ecossistema , Fluxo Gênico , Lagartos/genética , Índias Ocidentais
6.
Mol Biol Evol ; 34(4): 1016-1020, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087773

RESUMO

Bayesian inference using Markov chain Monte Carlo (MCMC) has become one of the primary methods used to infer phylogenies from sequence data. Assessing convergence is a crucial component of these analyses, as it establishes the reliability of the posterior distribution estimates of the tree topology and model parameters sampled from the MCMC. Numerous tests and visualizations have been developed for this purpose, but many of the most popular methods are implemented in ways that make them inconvenient to use for large data sets. RWTY is an R package that implements established and new methods for diagnosing phylogenetic MCMC convergence in a single convenient interface.


Assuntos
Análise de Sequência de DNA/métodos , Algoritmos , Teorema de Bayes , Humanos , Cadeias de Markov , Modelos Genéticos , Método de Monte Carlo , Filogenia , Reprodutibilidade dos Testes , Software
7.
Am Nat ; 188(3): 357-64, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27501092

RESUMO

We report a new chameleon-like Anolis species from Hispaniola that is ecomorphologically similar to congeners found only on Cuba. Lizards from both clades possess short limbs and a short tail and utilize relatively narrow perches, leading us to recognize a novel example of ecomorphological matching among islands in the well-known Greater Antillean anole radiation. This discovery supports the hypothesis that the assembly of island faunas can be substantially deterministic and highlights the continued potential for basic discovery to reveal new insights in well-studied groups. Restricted to a threatened band of midelevation transitional forest near the border of the Dominican Republic and Haiti, this new species appears to be highly endangered.


Assuntos
Lagartos/anatomia & histologia , Lagartos/classificação , Animais , Evolução Biológica , República Dominicana , Feminino , Haiti , Lagartos/genética , Masculino , Filogeografia , Análise de Sequência de DNA , Especificidade da Espécie
8.
Genome Res ; 22(8): 1499-511, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22534282

RESUMO

The three species of the Drosophila simulans clade--the cosmopolitan species, D. simulans, and the two island endemic species, D. mauritiana and D. sechellia--are important models in speciation genetics, but some details of their phylogenetic and speciation history remain unresolved. The order and timing of speciation are disputed, and the existence, magnitude, and timing of gene flow among the three species remain unclear. Here we report on the analysis of a whole-genome four-species sequence alignment that includes all three D. simulans clade species as well as the D. melanogaster reference sequence. The alignment comprises novel, paired short-read sequence data from a single highly inbred line each from D. simulans, D. mauritiana, and D. sechellia. We are unable to reject a species phylogeny with a basal polytomy; the estimated age of the polytomy is 242,000 yr before the present. However, we also find that up to 4.6% of autosomal and 2.2% of X-linked regions have evolutionary histories consistent with recent gene flow between the mainland species (D. simulans) and the two island endemic species (D. mauritiana and D. sechellia). Our findings thus show that gene flow has occurred throughout the genomes of the D. simulans clade species despite considerable geographic, ecological, and intrinsic reproductive isolation. Last, our analysis of lineage-specific changes confirms that the D. sechellia genome has experienced a significant excess of slightly deleterious changes and a dearth of presumed favorable changes. The relatively reduced efficacy of natural selection in D. sechellia is consistent with its derived, persistently reduced historical effective population size.


Assuntos
Drosophila/classificação , Especiação Genética , Genoma de Inseto , Animais , Sequência de Bases , Cromossomos de Insetos/genética , Drosophila/genética , Evolução Molecular , Fluxo Gênico , Haplótipos , Filogenia , Densidade Demográfica , Isolamento Reprodutivo , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
9.
Mol Phylogenet Evol ; 87: 105-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25772800

RESUMO

The distichus species group includes six species and 21 subspecies of trunk ecomorph anoles distributed across Hispaniola and its satellite islands as well as the northern Bahamas. Although this group has long served as a model system for studies of reproductive character displacement, adaptation, behavior and speciation, it has never been the subject of a comprehensive phylogenetic analysis. Our goal here is to generate a multilocus phylogenetic dataset (one mitochondrial and seven nuclear loci) and to use this dataset to infer phylogenetic relationships among the majority of the taxa assigned to the distichus species group. We use these phylogenetic trees to address three topics about the group's evolution. First, we consider longstanding taxonomic controversies about the status of several species and subspecies assigned to the distichus species group. Second, we investigate the biogeographic history of the group and specifically test the hypotheses that historical division of Hispaniola into two paleo-islands contributed to the group's diversification and that Bahamian and Hispaniolan satellite island populations are derived from colonists from the main Hispaniolan landmass. Finally, third, we use comparative phylogenetic analyses to test the hypothesis that divergence between pale yellow and darkly pigmented orange or red dewlap coloration has occurred repeatedly across the distichus species group.


Assuntos
Evolução Biológica , Lagartos/classificação , Filogenia , Animais , Bahamas , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Ilhas , Lagartos/genética , Modelos Genéticos , Filogeografia , Pigmentação , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 85: 1-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25659337

RESUMO

The freshwater mussel family Hyriidae (Mollusca: Bivalvia: Unionida) has a disjunct trans-Pacific distribution in Australasia and South America. Previous phylogenetic analyses have estimated the evolutionary relationships of the family and the major infra-familial taxa (Velesunioninae and Hyriinae: Hyridellini in Australia; Hyriinae: Hyriini, Castaliini, and Rhipidodontini in South America), but taxon and character sampling have been too incomplete to support a predictive classification or allow testing of biogeographical hypotheses. We sampled 30 freshwater mussel individuals representing the aforementioned hyriid taxa, as well as outgroup species representing the five other freshwater mussel families and their marine sister group (order Trigoniida). Our ingroup included representatives of all Australian genera. Phylogenetic relationships were estimated from three gene fragments (nuclear 28S, COI and 16S mtDNA) using maximum parsimony, maximum likelihood, and Bayesian inference, and we applied a Bayesian relaxed clock model calibrated with fossil dates to estimate node ages. Our analyses found good support for monophyly of the Hyriidae and the subfamilies and tribes, as well as the paraphyly of the Australasian taxa (Velesunioninae, (Hyridellini, (Rhipidodontini, (Castaliini, Hyriini)))). The Hyriidae was recovered as sister to a clade comprised of all other Recent freshwater mussel families. Our molecular date estimation supported Cretaceous origins of the major hyriid clades, pre-dating the Tertiary isolation of South America from Antarctica/Australia. We hypothesize that early diversification of the Hyriidae was driven by terrestrial barriers on Gondwana rather than marine barriers following disintegration of the super-continent.


Assuntos
Evolução Biológica , Bivalves/classificação , Filogenia , Animais , Austrália , Teorema de Bayes , Bivalves/genética , Primers do DNA , DNA Mitocondrial/genética , Fósseis , Funções Verossimilhança , Modelos Genéticos , Análise de Sequência de DNA , América do Sul
11.
Evolution ; 78(5): 987-994, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386965

RESUMO

Color and pattern are often critical to survival and fitness, but we know little about their genetic architecture and heritability in groups like reptiles. We investigated the genetic architecture for the pattern of the dewlap-an extensible throat fan important for communication-in anole lizards. We studied the Hispaniolan bark anole (Anolis distichus)-a species that exhibits impressive intraspecific dewlap polymorphism across its range-by conducting multigenerational experimental crosses with 2 populations, one with a solid pale yellow dewlap and another with an orange dewlap surrounded by a yellow margin. Upon rejecting the hypothesis that the extent of the orange pattern is a quantitative trait resulting from many loci of minor effect, we used a maximum likelihood model-fitting framework to show that it is better explained as a simple Mendelian trait, with the solid yellow morph being dominant over the blush orange. The relatively simple genetic architecture underlying this important trait helps explain the complex distribution of dewlap color variation across the range of A. distichus and suggests that changes in dewlap color and pattern may evolve rapidly in response to natural selection.


Assuntos
Lagartos , Pigmentação , Animais , Lagartos/genética , Lagartos/anatomia & histologia , Pigmentação/genética , Masculino , Feminino
12.
PeerJ ; 12: e17076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708350

RESUMO

Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2, ND4, ND5, COI, and COIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of 16S commonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation with ND2 weakened the resolution of ND2. We therefore recommend the avoidance of this 16S fragment in future phylogenetic work.


Assuntos
Genoma Mitocondrial , Lagartos , Filogenia , Animais , Genoma Mitocondrial/genética , Lagartos/genética , Genes Mitocondriais/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-38692838

RESUMO

Understanding the processes that drive phenotypic diversification and underpin speciation is key to elucidating how biodiversity has evolved. Although these processes have been studied across a wide array of clades, adaptive radiations (ARs), which are systems with multiple closely related species and broad phenotypic diversity, have been particularly fruitful for teasing apart the factors that drive and constrain diversification. As such, ARs have become popular candidate study systems for determining the extent to which ecological features, including aspects of organisms and the environment, and inter- and intraspecific interactions, led to evolutionary diversification. Despite substantial past empirical and theoretical work, understanding mechanistically how ARs evolve remains a major challenge. Here, we highlight a number of understudied components of the environment and of lineages themselves, which may help further our understanding of speciation and AR. We also outline some substantial remaining challenges to achieving a detailed understanding of adaptation, speciation, and the role of ecology in these processes. These major challenges include identifying factors that have a causative impact in promoting or constraining ARs, gaining a more holistic understanding of features of organisms and their environment that interact resulting in adaptation and speciation, and understanding whether the role of these organismal and environmental features varies throughout the radiation process. We conclude by providing perspectives on how future investigations into the AR process can overcome these challenges, allowing us to glean mechanistic insights into adaptation and speciation.

14.
Mol Ecol ; 22(15): 3981-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551461

RESUMO

The pattern of reproductive character displacement (RCD)-in which traits associated with reproductive isolation are more different where two species occur together than where they occur in isolation-is frequently attributed to reinforcement, a process during which natural selection acting against maladaptive mating events leads to enhanced prezygotic isolation between species or incipient species. One of the first studies of RCD to include molecular genetic data was described 40 years ago in a complex of Haitian trunk anole lizards using a small number of allozyme loci. In this example, Anolis caudalis appears to experience divergence in the color and pattern of an extensible throat fan, or dewlap, in areas of contact with closely related species at the northern and southern limits of its range. However, this case study has been largely overlooked for decades; meanwhile, explanations for geographic variation in dewlap color and pattern have focused primarily on adaptation to local signalling environments. We reinvestigate this example using amplified fragment length polymorphism (AFLP) genome scans, mtDNA sequence data, information on dewlap phenotypes and GIS data on environmental variation to test the hypothesis of RCD generated by reinforcement in Haitian trunk anoles. Together, our phenotypic and genetic results are consistent with RCD at the southern and northern limits of the range of A. caudalis. We evaluate the evidence for reinforcement as the explanation for RCD in Haitian trunk anoles, consider alternative explanations and provide suggestions for future work on the relationship between dewlap variation and speciation in Haitian trunk anoles.


Assuntos
Fluxo Gênico/genética , Variação Genética , Lagartos/genética , Mitocôndrias/genética , Isolamento Reprodutivo , Adaptação Biológica/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , DNA Mitocondrial/análise , Especiação Genética , Haiti , NADH Desidrogenase/genética , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
15.
Mol Phylogenet Evol ; 67(3): 560-77, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23467005

RESUMO

Doradidae is a monophyletic catfish family endemic to continental South America, and composed of 93 valid species here placed in 31 genera. Existing phylogenetic hypotheses for Doradidae are derived from comprehensive analyses of morphological data, and a single molecular-based study on a limited subset of taxa. To provide a robust molecular phylogeny commensurate with those based on morphology, we gathered original and published sequence data for 86 species-level taxa (at least 70 valid species plus 16 new or questionably nominal species) and all genera of Doradidae, as well as 10 species (nine genera) of Auchenipteridae and three species and genera of Aspredinidae as outgroups. 3011 base pairs were aligned for two mitochondrial genes (cytochrome c oxidase subunit 1, and 16S ribosomal RNA) and one nuclear gene (recombination activating gene 1), and analyzed for a total of 143 specimens (130 doradids, 10 auchenipterids and three aspredinids). Tree topologies generated by Maximum Parsimony, Maximum Likelihood, and Bayesian analyses were largely congruent, and are compared to existing phylogenies based on morphology and molecules. Although many of the relationships supported by our molecular analyses corroborated those based on morphology, others are newly hypothesized or remain in conflict. The monotypic Wertheimeria, Franciscodoras and Kalyptodoras, for example, form a newly proposed clade, and the subfamily Astrodoradinae is placed at the base of the doradid tree. The monotypic Doraops and Centrochir, endemic to Caribbean drainages north and west of the Andes, are sister to Pterodoras and Platydoras, respectively, two genera that are widely distributed in Atlantic drainages. Additional biogeographic implications are discussed for hypothesized relationships among doradids. Molecular evidence strongly supports synonymization of monotypic Merodoras with Amblydoras, and transfer of Amblydoras bolivarensis to genus Scorpiodoras. Furthermore, we consider Opsodoras ternetzi to be more properly placed in the genus Nemadoras. The genus Opsodoras may warrant synonymization with Hemidoras, and the monophyly of genus Ossancora is not supported; however, we refrain from taxonomic decisions regarding those taxa until a broader spectrum of doradids can be submitted to further morphological and molecular phylogenetic analyses.


Assuntos
Peixes-Gato/classificação , Peixes-Gato/genética , Filogenia , Animais , Genes Mitocondriais , Marcadores Genéticos , Proteínas de Homeodomínio/genética , RNA Ribossômico 16S
16.
Genome Biol Evol ; 15(10)2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37847614

RESUMO

A complete and high-quality reference genome has become a fundamental tool for the study of functional, comparative, and evolutionary genomics. However, efforts to produce high-quality genomes for African taxa are lagging given the limited access to sufficient resources and technologies. The southern African dwarf chameleons (Bradypodion) are a relatively young lineage, with a large body of evidence demonstrating the highly adaptive capacity of these lizards. Bradypodion are known for their habitat specialization, with evidence of convergent phenotypes across the phylogeny. However, the underlying genetic architecture of these phenotypes remains unknown for Bradypodion, and without adequate genomic resources, many evolutionary questions cannot be answered. We present de novo assembled whole genomes for Bradypodion pumilum and Bradypodion ventrale, using Pacific Biosciences long-read sequencing data. BUSCO analysis revealed that 96.36% of single copy orthologs were present in the B. pumilum genome and 94% in B. ventrale. Moreover, these genomes boast scaffold N50 of 389.6 and 374.9 Mb, respectively. Based on a whole genome alignment of both Bradypodion genomes, B. pumilum is highly syntenic with B. ventrale. Furthermore, Bradypodion is also syntenic with Anolis lizards, despite the divergence between these lineages estimated to be nearly 170 Ma. Coalescent analysis of the genomic data also suggests that historical changes in effective population size for these species correspond to notable shifts in the southern African environment. These high-quality Bradypodion genome assemblies will support future research on the evolutionary history, diversification, and genetic underpinnings of adaptation in Bradypodion.


Assuntos
Evolução Biológica , Lagartos , Animais , Filogenia , Genômica , Genoma , Lagartos/genética
17.
Sci Rep ; 13(1): 9141, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336900

RESUMO

Hoplodactylus delcourti is a presumably extinct species of diplodactylid gecko known only from a single specimen of unknown provenance. It is by far the largest known gekkotan, approximately 50% longer than the next largest-known species. It has been considered a member of the New Zealand endemic genus Hoplodactylus based on external morphological features including shared toe pad structure. We obtained DNA from a bone sample of the only known specimen to generate high-throughput sequence data suitable for phylogenetic analysis of its evolutionary history. Complementary sequence data were obtained from a broad sample of diplodactylid geckos. Our results indicate that the species is not most closely related to extant Hoplodactylus or any other New Zealand gecko. Instead, it is a member of a clade whose living species are endemic to New Caledonia. Phylogenetic comparative analyses indicate that the New Caledonian diplodactylid clade has evolved significantly more disparate body sizes than either the Australian or New Zealand clades. Toe pad structure has changed repeatedly across diplodactylids, including multiple times in the New Caledonia clade, partially explaining the convergence in form between H. delcourti and New Zealand Hoplodactylus. Based on the phylogenetic results, we place H. delcourti in a new genus.


Assuntos
DNA Mitocondrial , Lagartos , Animais , Filogenia , Austrália , DNA Mitocondrial/genética , Lagartos/genética , Sequenciamento de Nucleotídeos em Larga Escala
18.
Trends Ecol Evol ; 38(7): 631-642, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870806

RESUMO

A recurring feature of oceanic archipelagos is the presence of adaptive radiations that generate endemic, species-rich clades that can offer outstanding insight into the links between ecology and evolution. Recent developments in evolutionary genomics have contributed towards solving long-standing questions at this interface. Using a comprehensive literature search, we identify studies spanning 19 oceanic archipelagos and 110 putative adaptive radiations, but find that most of these radiations have not yet been investigated from an evolutionary genomics perspective. Our review reveals different gaps in knowledge related to the lack of implementation of genomic approaches, as well as undersampled taxonomic and geographic areas. Filling those gaps with the required data will help to deepen our understanding of adaptation, speciation, and other evolutionary processes.


Assuntos
Evolução Biológica , Especiação Genética , Filogenia , Ecologia , Genômica
19.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36063049

RESUMO

The diversity among Drosophila species presents an opportunity to study the molecular mechanisms underlying the evolution of biological phenomena. A challenge to investigating these species is that, unlike the plethora of molecular and genetics tools available for D. melanogaster research, many other species do not have sequenced genomes; a requirement for employing these tools. Selecting transgenic flies through white (w) complementation has been commonly practiced in numerous Drosophila species. While tolerated, the disruption of w is associated with impaired vision, among other effects in D. melanogaster. The D. nebulosa fly has a unique mating behavior which requires vision, and is thus unable to successfully mate in dark conditions. Here, we hypothesized that the disruption of w will impede mating success. As a first step, using PacBio long-read sequencing, we assembled a high-quality annotated genome of D. nebulosa. Using these data, we employed CRISPR/Cas9 to successfully disrupt the w gene. As expected, D. nebulosa males null for w did not court females, unlike several other mutant strains of Drosophila species whose w gene has been disrupted. In the absence of mating, no females became homozygous null for w. We conclude that gene disruption via CRISPR/Cas9 genome engineering is a successful tool in D. nebulosa, and that the w gene is necessary for mating. Thus, an alternative selectable marker unrelated to vision is desirable.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Masculino , Drosophila/genética , Drosophila melanogaster/genética , Animais Geneticamente Modificados
20.
Mitochondrial DNA B Resour ; 7(6): 1180-1182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783044

RESUMO

We present the complete mitochondrial genome of Chilabothrus argentum, which is 17,345 bp in length, has 22 transfer ribonucleic acids (tRNAs), 2 ribosomal subunits (rRNAs), 13 protein-coding genes, an origin of the light-strand replication (OL), and two control regions (CR1, CR2). A maximum likelihood phylogenetic estimate using nine other snake mitochondrial genomes yields agreement with previous investigations into the evolutionary relationships of snakes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa